| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss2 | Structured version Visualization version GIF version | ||
| Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 5049 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| uniss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssuni 4932 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵)) |
| 3 | 2 | rexlimiv 3148 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵) |
| 4 | 3 | ralimi 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) |
| 5 | unissb 4939 | . 2 ⊢ (∪ 𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∪ cuni 4907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-uni 4908 |
| This theorem is referenced by: unidif 4942 coflim 10301 onsssupeqcond 43293 |
| Copyright terms: Public domain | W3C validator |