| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss2 | Structured version Visualization version GIF version | ||
| Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4998 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| uniss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssuni 4884 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵)) |
| 3 | 2 | rexlimiv 3126 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵) |
| 4 | 3 | ralimi 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) |
| 5 | unissb 4891 | . 2 ⊢ (∪ 𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3919 df-uni 4860 |
| This theorem is referenced by: unidif 4893 coflim 10152 onsssupeqcond 43319 |
| Copyright terms: Public domain | W3C validator |