MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss2 Structured version   Visualization version   GIF version

Theorem uniss2 4922
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 5030 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 4913 . . . . 5 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
21expcom 413 . . . 4 (𝑦𝐵 → (𝑥𝑦𝑥 𝐵))
32rexlimiv 3135 . . 3 (∃𝑦𝐵 𝑥𝑦𝑥 𝐵)
43ralimi 3074 . 2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴 𝑥 𝐵)
5 unissb 4920 . 2 ( 𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
64, 5sylibr 234 1 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3052  wrex 3061  wss 3931   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-uni 4889
This theorem is referenced by:  unidif  4923  coflim  10280  onsssupeqcond  43271
  Copyright terms: Public domain W3C validator