MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresex2d Structured version   Visualization version   GIF version

Theorem opabresex2d 7328
Description: Obsolete version of opabresex2 7327 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
opabresex2d.1 ((𝜑𝑥(𝑊𝐺)𝑦) → 𝜓)
opabresex2d.2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ 𝑉)
Assertion
Ref Expression
opabresex2d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V)
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabresex2d
StepHypRef Expression
1 opabresex2d.1 . . . 4 ((𝜑𝑥(𝑊𝐺)𝑦) → 𝜓)
21ex 413 . . 3 (𝜑 → (𝑥(𝑊𝐺)𝑦𝜓))
32alrimivv 1931 . 2 (𝜑 → ∀𝑥𝑦(𝑥(𝑊𝐺)𝑦𝜓))
4 opabresex2d.2 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ 𝑉)
5 opabbrex 7326 . 2 ((∀𝑥𝑦(𝑥(𝑊𝐺)𝑦𝜓) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V)
63, 4, 5syl2anc 584 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  Vcvv 3432   class class class wbr 5074  {copab 5136  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137
This theorem is referenced by:  mptmpoopabbrdOLD  7923
  Copyright terms: Public domain W3C validator