Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabresex2d | Structured version Visualization version GIF version |
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
Ref | Expression |
---|---|
opabresex2d.1 | ⊢ ((𝜑 ∧ 𝑥(𝑊‘𝐺)𝑦) → 𝜓) |
opabresex2d.2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ 𝑉) |
Ref | Expression |
---|---|
opabresex2d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresex2d.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥(𝑊‘𝐺)𝑦) → 𝜓) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥(𝑊‘𝐺)𝑦 → 𝜓)) |
3 | 2 | alrimivv 1932 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑊‘𝐺)𝑦 → 𝜓)) |
4 | opabresex2d.2 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ 𝑉) | |
5 | opabbrex 7306 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥(𝑊‘𝐺)𝑦 → 𝜓) ∧ {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V) | |
6 | 3, 4, 5 | syl2anc 583 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 {copab 5132 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 |
This theorem is referenced by: mptmpoopabbrd 7894 |
Copyright terms: Public domain | W3C validator |