![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptopab | Structured version Visualization version GIF version |
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
fvmptopab.1 | ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) |
fvmptopab.m | ⊢ 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) |
Ref | Expression |
---|---|
fvmptopab | ⊢ (𝑀‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝐹‘𝑧) = (𝐹‘𝑍)) | |
2 | 1 | breqd 5158 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑥(𝐹‘𝑧)𝑦 ↔ 𝑥(𝐹‘𝑍)𝑦)) |
3 | fvmptopab.1 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 629 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑) ↔ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓))) |
5 | 4 | opabbidv 5213 | . . 3 ⊢ (𝑧 = 𝑍 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
6 | fvmptopab.m | . . 3 ⊢ 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) | |
7 | opabresex2 7463 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ∈ V | |
8 | 5, 6, 7 | fvmpt 6997 | . 2 ⊢ (𝑍 ∈ V → (𝑀‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
9 | fvprc 6882 | . . 3 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = ∅) | |
10 | elopabran 5561 | . . . . . 6 ⊢ (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} → 𝑧 ∈ (𝐹‘𝑍)) | |
11 | 10 | ssriv 3985 | . . . . 5 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ (𝐹‘𝑍) |
12 | fvprc 6882 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐹‘𝑍) = ∅) | |
13 | 11, 12 | sseqtrid 4033 | . . . 4 ⊢ (¬ 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅) |
14 | ss0 4397 | . . . 4 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (¬ 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) |
16 | 9, 15 | eqtr4d 2773 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
17 | 8, 16 | pm2.61i 182 | 1 ⊢ (𝑀‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: trlsfval 29219 pthsfval 29245 spthsfval 29246 clwlks 29296 crcts 29312 cycls 29313 eupths 29720 |
Copyright terms: Public domain | W3C validator |