Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 7191
 Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
fvmptopab.1 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
fvmptopab.2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
fvmptopab.3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
Assertion
Ref Expression
fvmptopab (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Distinct variable groups:   𝑧,𝐹   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fvmptopab.3 . . . 4 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
2 fveq2 6651 . . . . . . . 8 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
32breqd 5058 . . . . . . 7 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
43adantl 485 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
5 fvmptopab.1 . . . . . . 7 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
65adantll 713 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝜒𝜓))
74, 6anbi12d 633 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → ((𝑥(𝐹𝑧)𝑦𝜒) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
87opabbidv 5113 . . . 4 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 simpl 486 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
10 id 22 . . . . . 6 (𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
1110gen2 1798 . . . . 5 𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
12 fvmptopab.2 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
1312adantl 485 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
14 opabbrex 7189 . . . . 5 ((∀𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
1511, 13, 14sylancr 590 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
161, 8, 9, 15fvmptd2 6757 . . 3 ((𝑍 ∈ V ∧ 𝜑) → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
1716ex 416 . 2 (𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
18 fvprc 6644 . . . 4 𝑍 ∈ V → (𝑀𝑍) = ∅)
19 br0 5096 . . . . . . . 8 ¬ 𝑥𝑦
20 fvprc 6644 . . . . . . . . 9 𝑍 ∈ V → (𝐹𝑍) = ∅)
2120breqd 5058 . . . . . . . 8 𝑍 ∈ V → (𝑥(𝐹𝑍)𝑦𝑥𝑦))
2219, 21mtbiri 330 . . . . . . 7 𝑍 ∈ V → ¬ 𝑥(𝐹𝑍)𝑦)
2322intnanrd 493 . . . . . 6 𝑍 ∈ V → ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2423alrimivv 1930 . . . . 5 𝑍 ∈ V → ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
25 opab0 5422 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2624, 25sylibr 237 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
2718, 26eqtr4d 2862 . . 3 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
2827a1d 25 . 2 𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
2917, 28pm2.61i 185 1 (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2115  Vcvv 3479  ∅c0 4274   class class class wbr 5047  {copab 5109   ↦ cmpt 5127  ‘cfv 6336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6295  df-fun 6338  df-fv 6344 This theorem is referenced by:  trlsfval  27474  pthsfval  27499  spthsfval  27500  clwlks  27550  crcts  27566  cycls  27567  eupths  27974
 Copyright terms: Public domain W3C validator