![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptopab | Structured version Visualization version GIF version |
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
fvmptopab.1 | ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) |
fvmptopab.m | ⊢ 𝑀 = (𝑧 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) |
Ref | Expression |
---|---|
fvmptopab | ⊢ (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝐹‘𝑧) = (𝐹‘𝑍)) | |
2 | 1 | breqd 5159 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑥(𝐹‘𝑧)𝑦 ↔ 𝑥(𝐹‘𝑍)𝑦)) |
3 | fvmptopab.1 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑) ↔ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓))) |
5 | 4 | opabbidv 5214 | . . 3 ⊢ (𝑧 = 𝑍 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
6 | fvmptopab.m | . . 3 ⊢ 𝑀 = (𝑧 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) | |
7 | opabresex2 7485 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ∈ V | |
8 | 5, 6, 7 | fvmpt 7016 | . 2 ⊢ (𝑍 ∈ V → (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
9 | fvprc 6899 | . . 3 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = ∅) | |
10 | elopabran 5572 | . . . . . 6 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} → 𝑧 ∈ (𝐹‘𝑍)) | |
11 | 10 | ssriv 3999 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ (𝐹‘𝑍) |
12 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐹‘𝑍) = ∅) | |
13 | 11, 12 | sseqtrid 4048 | . . . 4 ⊢ (¬ 𝑍 ∈ V → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅) |
14 | ss0 4408 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅ → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (¬ 𝑍 ∈ V → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) |
16 | 9, 15 | eqtr4d 2778 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
17 | 8, 16 | pm2.61i 182 | 1 ⊢ (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: trlsfval 29728 pthsfval 29754 spthsfval 29755 clwlks 29805 crcts 29821 cycls 29822 eupths 30229 |
Copyright terms: Public domain | W3C validator |