MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 7401
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
fvmptopab.1 (𝑧 = 𝑍 → (𝜑𝜓))
fvmptopab.m 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
Assertion
Ref Expression
fvmptopab (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
21breqd 5102 . . . . 5 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
3 fvmptopab.1 . . . . 5 (𝑧 = 𝑍 → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 (𝑧 = 𝑍 → ((𝑥(𝐹𝑧)𝑦𝜑) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
54opabbidv 5157 . . 3 (𝑧 = 𝑍 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
6 fvmptopab.m . . 3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
7 opabresex2 7400 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V
85, 6, 7fvmpt 6929 . 2 (𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 fvprc 6814 . . 3 𝑍 ∈ V → (𝑀𝑍) = ∅)
10 elopabran 5501 . . . . . 6 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} → 𝑧 ∈ (𝐹𝑍))
1110ssriv 3938 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ (𝐹𝑍)
12 fvprc 6814 . . . . 5 𝑍 ∈ V → (𝐹𝑍) = ∅)
1311, 12sseqtrid 3977 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅)
14 ss0 4352 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
1513, 14syl 17 . . 3 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
169, 15eqtr4d 2769 . 2 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
178, 16pm2.61i 182 1 (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  c0 4283   class class class wbr 5091  {copab 5153  cmpt 5172  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  trlsfval  29670  pthsfval  29695  spthsfval  29696  clwlks  29748  crcts  29764  cycls  29765  eupths  30175
  Copyright terms: Public domain W3C validator