MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 7487
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
fvmptopab.1 (𝑧 = 𝑍 → (𝜑𝜓))
fvmptopab.m 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
Assertion
Ref Expression
fvmptopab (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fveq2 6907 . . . . . 6 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
21breqd 5159 . . . . 5 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
3 fvmptopab.1 . . . . 5 (𝑧 = 𝑍 → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 (𝑧 = 𝑍 → ((𝑥(𝐹𝑧)𝑦𝜑) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
54opabbidv 5214 . . 3 (𝑧 = 𝑍 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
6 fvmptopab.m . . 3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
7 opabresex2 7485 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V
85, 6, 7fvmpt 7016 . 2 (𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 fvprc 6899 . . 3 𝑍 ∈ V → (𝑀𝑍) = ∅)
10 elopabran 5572 . . . . . 6 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} → 𝑧 ∈ (𝐹𝑍))
1110ssriv 3999 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ (𝐹𝑍)
12 fvprc 6899 . . . . 5 𝑍 ∈ V → (𝐹𝑍) = ∅)
1311, 12sseqtrid 4048 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅)
14 ss0 4408 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
1513, 14syl 17 . . 3 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
169, 15eqtr4d 2778 . 2 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
178, 16pm2.61i 182 1 (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148  {copab 5210  cmpt 5231  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  trlsfval  29728  pthsfval  29754  spthsfval  29755  clwlks  29805  crcts  29821  cycls  29822  eupths  30229
  Copyright terms: Public domain W3C validator