MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 7461
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
fvmptopab.1 (𝑧 = 𝑍 → (𝜑𝜓))
fvmptopab.m 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
Assertion
Ref Expression
fvmptopab (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fveq2 6876 . . . . . 6 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
21breqd 5130 . . . . 5 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
3 fvmptopab.1 . . . . 5 (𝑧 = 𝑍 → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 (𝑧 = 𝑍 → ((𝑥(𝐹𝑧)𝑦𝜑) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
54opabbidv 5185 . . 3 (𝑧 = 𝑍 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
6 fvmptopab.m . . 3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
7 opabresex2 7459 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V
85, 6, 7fvmpt 6986 . 2 (𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 fvprc 6868 . . 3 𝑍 ∈ V → (𝑀𝑍) = ∅)
10 elopabran 5537 . . . . . 6 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} → 𝑧 ∈ (𝐹𝑍))
1110ssriv 3962 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ (𝐹𝑍)
12 fvprc 6868 . . . . 5 𝑍 ∈ V → (𝐹𝑍) = ∅)
1311, 12sseqtrid 4001 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅)
14 ss0 4377 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
1513, 14syl 17 . . 3 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
169, 15eqtr4d 2773 . 2 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
178, 16pm2.61i 182 1 (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  {copab 5181  cmpt 5201  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539
This theorem is referenced by:  trlsfval  29675  pthsfval  29701  spthsfval  29702  clwlks  29754  crcts  29770  cycls  29771  eupths  30181
  Copyright terms: Public domain W3C validator