MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 7465
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
fvmptopab.1 (𝑧 = 𝑍 → (𝜑𝜓))
fvmptopab.m 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
Assertion
Ref Expression
fvmptopab (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fveq2 6890 . . . . . 6 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
21breqd 5158 . . . . 5 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
3 fvmptopab.1 . . . . 5 (𝑧 = 𝑍 → (𝜑𝜓))
42, 3anbi12d 629 . . . 4 (𝑧 = 𝑍 → ((𝑥(𝐹𝑧)𝑦𝜑) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
54opabbidv 5213 . . 3 (𝑧 = 𝑍 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
6 fvmptopab.m . . 3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜑)})
7 opabresex2 7463 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V
85, 6, 7fvmpt 6997 . 2 (𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 fvprc 6882 . . 3 𝑍 ∈ V → (𝑀𝑍) = ∅)
10 elopabran 5561 . . . . . 6 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} → 𝑧 ∈ (𝐹𝑍))
1110ssriv 3985 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ (𝐹𝑍)
12 fvprc 6882 . . . . 5 𝑍 ∈ V → (𝐹𝑍) = ∅)
1311, 12sseqtrid 4033 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅)
14 ss0 4397 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
1513, 14syl 17 . . 3 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
169, 15eqtr4d 2773 . 2 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
178, 16pm2.61i 182 1 (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  wss 3947  c0 4321   class class class wbr 5147  {copab 5209  cmpt 5230  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  trlsfval  29219  pthsfval  29245  spthsfval  29246  clwlks  29296  crcts  29312  cycls  29313  eupths  29720
  Copyright terms: Public domain W3C validator