Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptopab | Structured version Visualization version GIF version |
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
fvmptopab.1 | ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) |
fvmptopab.m | ⊢ 𝑀 = (𝑧 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) |
Ref | Expression |
---|---|
fvmptopab | ⊢ (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝐹‘𝑧) = (𝐹‘𝑍)) | |
2 | 1 | breqd 5085 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑥(𝐹‘𝑧)𝑦 ↔ 𝑥(𝐹‘𝑍)𝑦)) |
3 | fvmptopab.1 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑) ↔ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓))) |
5 | 4 | opabbidv 5140 | . . 3 ⊢ (𝑧 = 𝑍 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
6 | fvmptopab.m | . . 3 ⊢ 𝑀 = (𝑧 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) | |
7 | opabresex2 7327 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ∈ V | |
8 | 5, 6, 7 | fvmpt 6875 | . 2 ⊢ (𝑍 ∈ V → (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
9 | fvprc 6766 | . . 3 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = ∅) | |
10 | elopabran 5475 | . . . . . 6 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} → 𝑧 ∈ (𝐹‘𝑍)) | |
11 | 10 | ssriv 3925 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ (𝐹‘𝑍) |
12 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐹‘𝑍) = ∅) | |
13 | 11, 12 | sseqtrid 3973 | . . . 4 ⊢ (¬ 𝑍 ∈ V → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅) |
14 | ss0 4332 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} ⊆ ∅ → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (¬ 𝑍 ∈ V → {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} = ∅) |
16 | 9, 15 | eqtr4d 2781 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)}) |
17 | 8, 16 | pm2.61i 182 | 1 ⊢ (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: trlsfval 28063 pthsfval 28089 spthsfval 28090 clwlks 28140 crcts 28156 cycls 28157 eupths 28564 |
Copyright terms: Public domain | W3C validator |