![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabresex2 | Structured version Visualization version GIF version |
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable conditions betweem 𝑊, 𝐺 and 𝑥, 𝑦 to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
opabresex2 | ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6894 | . 2 ⊢ (𝑊‘𝐺) ∈ V | |
2 | elopabran 5552 | . . 3 ⊢ (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} → 𝑧 ∈ (𝑊‘𝐺)) | |
3 | 2 | ssriv 3978 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ⊆ (𝑊‘𝐺) |
4 | 1, 3 | ssexi 5312 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2098 Vcvv 3466 class class class wbr 5138 {copab 5200 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-sn 4621 df-pr 4623 df-uni 4900 df-br 5139 df-opab 5201 df-iota 6485 df-fv 6541 |
This theorem is referenced by: fvmptopab 7455 mptmpoopabbrd 8060 mptmpoopabbrdOLD 8061 |
Copyright terms: Public domain | W3C validator |