MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresex2 Structured version   Visualization version   GIF version

Theorem opabresex2 7327
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable conditions betweem 𝑊, 𝐺 and 𝑥, 𝑦 to remove hypotheses. (Revised by SN, 13-Dec-2024.)
Assertion
Ref Expression
opabresex2 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V
Distinct variable groups:   𝑥,𝑊   𝑦,𝑊   𝑥,𝐺   𝑦,𝐺
Allowed substitution hints:   𝜃(𝑥,𝑦)

Proof of Theorem opabresex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . 2 (𝑊𝐺) ∈ V
2 elopabran 5475 . . 3 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} → 𝑧 ∈ (𝑊𝐺))
32ssriv 3925 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ⊆ (𝑊𝐺)
41, 3ssexi 5246 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  Vcvv 3432   class class class wbr 5074  {copab 5136  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441
This theorem is referenced by:  fvmptopab  7329  mptmpoopabbrd  7921
  Copyright terms: Public domain W3C validator