![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabresex2 | Structured version Visualization version GIF version |
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable conditions betweem 𝑊, 𝐺 and 𝑥, 𝑦 to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
opabresex2 | ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . 2 ⊢ (𝑊‘𝐺) ∈ V | |
2 | elopabran 5581 | . . 3 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} → 𝑧 ∈ (𝑊‘𝐺)) | |
3 | 2 | ssriv 4012 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ⊆ (𝑊‘𝐺) |
4 | 1, 3 | ssexi 5340 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fvmptopab 7504 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 |
Copyright terms: Public domain | W3C validator |