MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresex2 Structured version   Visualization version   GIF version

Theorem opabresex2 7453
Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable conditions betweem 𝑊, 𝐺 and 𝑥, 𝑦 to remove hypotheses. (Revised by SN, 13-Dec-2024.)
Assertion
Ref Expression
opabresex2 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V
Distinct variable groups:   𝑥,𝑊   𝑦,𝑊   𝑥,𝐺   𝑦,𝐺
Allowed substitution hints:   𝜃(𝑥,𝑦)

Proof of Theorem opabresex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fvex 6894 . 2 (𝑊𝐺) ∈ V
2 elopabran 5552 . . 3 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} → 𝑧 ∈ (𝑊𝐺))
32ssriv 3978 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ⊆ (𝑊𝐺)
41, 3ssexi 5312 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2098  Vcvv 3466   class class class wbr 5138  {copab 5200  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-sn 4621  df-pr 4623  df-uni 4900  df-br 5139  df-opab 5201  df-iota 6485  df-fv 6541
This theorem is referenced by:  fvmptopab  7455  mptmpoopabbrd  8060  mptmpoopabbrdOLD  8061
  Copyright terms: Public domain W3C validator