Proof of Theorem mptmpoopabbrdOLDOLD
| Step | Hyp | Ref
| Expression |
| 1 | | mptmpoopabbrdOLD.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| 2 | | mptmpoopabbrdOLD.m |
. . . . 5
⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
| 3 | | fveq2 6905 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝐴‘𝑔) = (𝐴‘𝐺)) |
| 4 | | fveq2 6905 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝐵‘𝑔) = (𝐵‘𝐺)) |
| 5 | | mptmpoopabbrdOLD.2 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) |
| 6 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝐷‘𝑔) = (𝐷‘𝐺)) |
| 7 | 6 | breqd 5153 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑓(𝐷‘𝑔)ℎ ↔ 𝑓(𝐷‘𝐺)ℎ)) |
| 8 | 5, 7 | anbi12d 632 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ) ↔ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
| 9 | 8 | opabbidv 5208 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| 10 | 3, 4, 9 | mpoeq123dv 7509 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
| 11 | | elex 3500 |
. . . . . 6
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 13 | | fvex 6918 |
. . . . . . 7
⊢ (𝐴‘𝐺) ∈ V |
| 14 | | fvex 6918 |
. . . . . . 7
⊢ (𝐵‘𝐺) ∈ V |
| 15 | 13, 14 | pm3.2i 470 |
. . . . . 6
⊢ ((𝐴‘𝐺) ∈ V ∧ (𝐵‘𝐺) ∈ V) |
| 16 | | mpoexga 8103 |
. . . . . 6
⊢ (((𝐴‘𝐺) ∈ V ∧ (𝐵‘𝐺) ∈ V) → (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V) |
| 17 | 15, 16 | mp1i 13 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V) |
| 18 | 2, 10, 12, 17 | fvmptd3 7038 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → (𝑀‘𝐺) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
| 19 | 1, 1, 18 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑀‘𝐺) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
| 20 | 19 | oveqd 7449 |
. 2
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌)) |
| 21 | | mptmpoopabbrdOLD.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
| 22 | | mptmpoopabbrdOLD.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
| 23 | | ancom 460 |
. . . . 5
⊢ ((𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)) |
| 24 | 23 | opabbii 5209 |
. . . 4
⊢
{〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} |
| 25 | | mptmpoopabbrdOLD.r |
. . . . 5
⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) |
| 26 | | mptmpoopabbrdOLD.v |
. . . . 5
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) |
| 27 | 25, 26 | opabresex2d 7487 |
. . . 4
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} ∈ V) |
| 28 | 24, 27 | eqeltrid 2844 |
. . 3
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} ∈ V) |
| 29 | | mptmpoopabbrdOLD.1 |
. . . . . 6
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) |
| 30 | 29 | anbi1d 631 |
. . . . 5
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ((𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
| 31 | 30 | opabbidv 5208 |
. . . 4
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| 32 | | eqid 2736 |
. . . 4
⊢ (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| 33 | 31, 32 | ovmpoga 7588 |
. . 3
⊢ ((𝑋 ∈ (𝐴‘𝐺) ∧ 𝑌 ∈ (𝐵‘𝐺) ∧ {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} ∈ V) → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| 34 | 21, 22, 28, 33 | syl3anc 1372 |
. 2
⊢ (𝜑 → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| 35 | 20, 34 | eqtrd 2776 |
1
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |