MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabbrdOLDOLD Structured version   Visualization version   GIF version

Theorem mptmpoopabbrdOLDOLD 8124
Description: Obsolete version of mptmpoopabbrd 8121 as of 13-Dec-2024. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mptmpoopabbrdOLD.g (𝜑𝐺𝑊)
mptmpoopabbrdOLD.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrdOLD.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrdOLD.v (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
mptmpoopabbrdOLD.r ((𝜑𝑓(𝐷𝐺)) → 𝜓)
mptmpoopabbrdOLD.1 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
mptmpoopabbrdOLD.2 (𝑔 = 𝐺 → (𝜒𝜏))
mptmpoopabbrdOLD.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabbrdOLDOLD (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑔   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝜏,𝑔   𝜃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜓(𝑓,𝑔,,𝑎,𝑏)   𝜒(𝑓,𝑔,,𝑎,𝑏)   𝜃(𝑓,𝑔,)   𝜏(𝑓,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐷(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑉(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabbrdOLDOLD
StepHypRef Expression
1 mptmpoopabbrdOLD.g . . . 4 (𝜑𝐺𝑊)
2 mptmpoopabbrdOLD.m . . . . 5 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
3 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (𝐴𝑔) = (𝐴𝐺))
4 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (𝐵𝑔) = (𝐵𝐺))
5 mptmpoopabbrdOLD.2 . . . . . . . 8 (𝑔 = 𝐺 → (𝜒𝜏))
6 fveq2 6920 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
76breqd 5177 . . . . . . . 8 (𝑔 = 𝐺 → (𝑓(𝐷𝑔)𝑓(𝐷𝐺)))
85, 7anbi12d 631 . . . . . . 7 (𝑔 = 𝐺 → ((𝜒𝑓(𝐷𝑔)) ↔ (𝜏𝑓(𝐷𝐺))))
98opabbidv 5232 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))} = {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
103, 4, 9mpoeq123dv 7525 . . . . 5 (𝑔 = 𝐺 → (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
11 elex 3509 . . . . . 6 (𝐺𝑊𝐺 ∈ V)
1211adantr 480 . . . . 5 ((𝐺𝑊𝐺𝑊) → 𝐺 ∈ V)
13 fvex 6933 . . . . . . 7 (𝐴𝐺) ∈ V
14 fvex 6933 . . . . . . 7 (𝐵𝐺) ∈ V
1513, 14pm3.2i 470 . . . . . 6 ((𝐴𝐺) ∈ V ∧ (𝐵𝐺) ∈ V)
16 mpoexga 8118 . . . . . 6 (((𝐴𝐺) ∈ V ∧ (𝐵𝐺) ∈ V) → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
1715, 16mp1i 13 . . . . 5 ((𝐺𝑊𝐺𝑊) → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
182, 10, 12, 17fvmptd3 7052 . . . 4 ((𝐺𝑊𝐺𝑊) → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
191, 1, 18syl2anc 583 . . 3 (𝜑 → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
2019oveqd 7465 . 2 (𝜑 → (𝑋(𝑀𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌))
21 mptmpoopabbrdOLD.x . . 3 (𝜑𝑋 ∈ (𝐴𝐺))
22 mptmpoopabbrdOLD.y . . 3 (𝜑𝑌 ∈ (𝐵𝐺))
23 ancom 460 . . . . 5 ((𝜃𝑓(𝐷𝐺)) ↔ (𝑓(𝐷𝐺)𝜃))
2423opabbii 5233 . . . 4 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)}
25 mptmpoopabbrdOLD.r . . . . 5 ((𝜑𝑓(𝐷𝐺)) → 𝜓)
26 mptmpoopabbrdOLD.v . . . . 5 (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
2725, 26opabresex2d 7503 . . . 4 (𝜑 → {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)} ∈ V)
2824, 27eqeltrid 2848 . . 3 (𝜑 → {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V)
29 mptmpoopabbrdOLD.1 . . . . . 6 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
3029anbi1d 630 . . . . 5 ((𝑎 = 𝑋𝑏 = 𝑌) → ((𝜏𝑓(𝐷𝐺)) ↔ (𝜃𝑓(𝐷𝐺))))
3130opabbidv 5232 . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
32 eqid 2740 . . . 4 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
3331, 32ovmpoga 7604 . . 3 ((𝑋 ∈ (𝐴𝐺) ∧ 𝑌 ∈ (𝐵𝐺) ∧ {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V) → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3421, 22, 28, 33syl3anc 1371 . 2 (𝜑 → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3520, 34eqtrd 2780 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  {copab 5228  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  mptmpoopabovdOLD  8125
  Copyright terms: Public domain W3C validator