| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbrex | Structured version Visualization version GIF version | ||
| Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| opabbrex | ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) | |
| 2 | pm3.41 492 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → 𝜑) → ((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) | |
| 3 | 2 | 2alimi 1813 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
| 5 | ssopab2 5484 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 7 | 1, 6 | ssexd 5260 | 1 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-opab 5152 |
| This theorem is referenced by: sprmpod 8154 opabresex0d 47395 |
| Copyright terms: Public domain | W3C validator |