MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbrex Structured version   Visualization version   GIF version

Theorem opabbrex 7326
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
opabbrex ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)

Proof of Theorem opabbrex
StepHypRef Expression
1 simpr 485 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉)
2 pm3.41 493 . . . . 5 ((𝑥𝑅𝑦𝜑) → ((𝑥𝑅𝑦𝜓) → 𝜑))
322alimi 1815 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝜑) → ∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑))
43adantr 481 . . 3 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → ∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑))
5 ssopab2 5459 . . 3 (∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
64, 5syl 17 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
71, 6ssexd 5248 1 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137
This theorem is referenced by:  opabresex2d  7328  fvmptopabOLD  7330  sprmpod  8040  wlkResOLD  28017  opabresex0d  44777
  Copyright terms: Public domain W3C validator