![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbrex | Structured version Visualization version GIF version |
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
opabbrex | ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) | |
2 | pm3.41 492 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → 𝜑) → ((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) | |
3 | 2 | 2alimi 1810 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
5 | ssopab2 5565 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
7 | 1, 6 | ssexd 5342 | 1 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-opab 5229 |
This theorem is referenced by: opabresex2d 7503 fvmptopabOLD 7505 sprmpod 8265 wlkResOLD 29686 opabresex0d 47200 |
Copyright terms: Public domain | W3C validator |