![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbrex | Structured version Visualization version GIF version |
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
opabbrex | ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) | |
2 | pm3.41 492 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → 𝜑) → ((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) | |
3 | 2 | 2alimi 1813 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
5 | ssopab2 5546 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
7 | 1, 6 | ssexd 5324 | 1 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-in 3955 df-ss 3965 df-opab 5211 |
This theorem is referenced by: opabresex2d 7465 fvmptopabOLD 7467 sprmpod 8212 wlkResOLD 29175 opabresex0d 46292 |
Copyright terms: Public domain | W3C validator |