Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbrex | Structured version Visualization version GIF version |
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
opabbrex | ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) | |
2 | pm3.41 492 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → 𝜑) → ((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) | |
3 | 2 | 2alimi 1816 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑)) |
5 | ssopab2 5452 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝜓) → 𝜑) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
7 | 1, 6 | ssexd 5243 | 1 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝜑) ∧ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 |
This theorem is referenced by: opabresex2d 7307 fvmptopab 7308 sprmpod 8011 wlkRes 27919 opabresex0d 44664 |
Copyright terms: Public domain | W3C validator |