Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilem Structured version   Visualization version   GIF version

Theorem opnneilem 46257
Description: Lemma factoring out common proof steps of opnneil 46261 and opnneirv 46259. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneilem.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
opnneilem (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneilem
StepHypRef Expression
1 sseq2 3952 . . . 4 (𝑥 = 𝑦 → (𝑆𝑥𝑆𝑦))
21adantl 483 . . 3 ((𝜑𝑥 = 𝑦) → (𝑆𝑥𝑆𝑦))
3 opnneilem.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3anbi12d 632 . 2 ((𝜑𝑥 = 𝑦) → ((𝑆𝑥𝜓) ↔ (𝑆𝑦𝜒)))
54cbvrexdva 3405 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wrex 3071  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rex 3072  df-v 3439  df-in 3899  df-ss 3909
This theorem is referenced by:  opnneirv  46259  opnneil  46261  opnneieqvv  46263
  Copyright terms: Public domain W3C validator