| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilem | Structured version Visualization version GIF version | ||
| Description: Lemma factoring out common proof steps of opnneil 49034 and opnneirv 49032. (Contributed by Zhi Wang, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| opnneilem.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opnneilem | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3957 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑦)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑦)) |
| 3 | opnneilem.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 5 | 4 | cbvrexdva 3214 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wrex 3057 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-ss 3915 |
| This theorem is referenced by: opnneirv 49032 opnneil 49034 opnneieqvv 49036 |
| Copyright terms: Public domain | W3C validator |