Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilem Structured version   Visualization version   GIF version

Theorem opnneilem 48916
Description: Lemma factoring out common proof steps of opnneil 48920 and opnneirv 48918. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneilem.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
opnneilem (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneilem
StepHypRef Expression
1 sseq2 3959 . . . 4 (𝑥 = 𝑦 → (𝑆𝑥𝑆𝑦))
21adantl 481 . . 3 ((𝜑𝑥 = 𝑦) → (𝑆𝑥𝑆𝑦))
3 opnneilem.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3anbi12d 632 . 2 ((𝜑𝑥 = 𝑦) → ((𝑆𝑥𝜓) ↔ (𝑆𝑦𝜒)))
54cbvrexdva 3211 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wrex 3054  wss 3900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-ss 3917
This theorem is referenced by:  opnneirv  48918  opnneil  48920  opnneieqvv  48922
  Copyright terms: Public domain W3C validator