Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilem | Structured version Visualization version GIF version |
Description: Lemma factoring out common proof steps of opnneil 46261 and opnneirv 46259. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneilem.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opnneilem | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3952 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑦)) | |
2 | 1 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑦)) |
3 | opnneilem.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
5 | 4 | cbvrexdva 3405 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wrex 3071 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3072 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: opnneirv 46259 opnneil 46261 opnneieqvv 46263 |
Copyright terms: Public domain | W3C validator |