Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneieqvv Structured version   Visualization version   GIF version

Theorem opnneieqvv 48897
Description: The equivalence between neighborhood and open neighborhood. A variant of opnneieqv 48896 with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneilv.2 ((𝜑𝑦𝑥) → (𝜓𝜒))
opnneil.3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
opnneieqvv (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneieqvv
StepHypRef Expression
1 opnneir.1 . . 3 (𝜑𝐽 ∈ Top)
2 opnneilv.2 . . 3 ((𝜑𝑦𝑥) → (𝜓𝜒))
3 opnneil.3 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
41, 2, 3opnneieqv 48896 . 2 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥𝐽 (𝑆𝑥𝜓)))
53opnneilem 48891 . 2 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
64, 5bitrd 279 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053  wss 3914  cfv 6511  Topctop 22780  neicnei 22984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-nei 22985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator