| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneir | Structured version Visualization version GIF version | ||
| Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| Ref | Expression |
|---|---|
| opnneir | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnneir.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓))) | |
| 3 | opnneiss 22981 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) | |
| 4 | 3 | 3expib 1122 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
| 5 | 4 | anim1d 611 | . . . 4 ⊢ (𝐽 ∈ Top → (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
| 6 | 2, 5 | biimtrrid 243 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
| 7 | 6 | reximdv2 3143 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 ‘cfv 6499 Topctop 22756 neicnei 22960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22757 df-nei 22961 |
| This theorem is referenced by: opnneirv 48869 opnneieqv 48872 |
| Copyright terms: Public domain | W3C validator |