![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneir | Structured version Visualization version GIF version |
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | β’ (π β π½ β Top) |
Ref | Expression |
---|---|
opnneir | β’ (π β (βπ₯ β π½ (π β π₯ β§ π) β βπ₯ β ((neiβπ½)βπ)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnneir.1 | . 2 β’ (π β π½ β Top) | |
2 | anass 467 | . . . 4 β’ (((π₯ β π½ β§ π β π₯) β§ π) β (π₯ β π½ β§ (π β π₯ β§ π))) | |
3 | opnneiss 22842 | . . . . . 6 β’ ((π½ β Top β§ π₯ β π½ β§ π β π₯) β π₯ β ((neiβπ½)βπ)) | |
4 | 3 | 3expib 1120 | . . . . 5 β’ (π½ β Top β ((π₯ β π½ β§ π β π₯) β π₯ β ((neiβπ½)βπ))) |
5 | 4 | anim1d 609 | . . . 4 β’ (π½ β Top β (((π₯ β π½ β§ π β π₯) β§ π) β (π₯ β ((neiβπ½)βπ) β§ π))) |
6 | 2, 5 | biimtrrid 242 | . . 3 β’ (π½ β Top β ((π₯ β π½ β§ (π β π₯ β§ π)) β (π₯ β ((neiβπ½)βπ) β§ π))) |
7 | 6 | reximdv2 3162 | . 2 β’ (π½ β Top β (βπ₯ β π½ (π β π₯ β§ π) β βπ₯ β ((neiβπ½)βπ)π)) |
8 | 1, 7 | syl 17 | 1 β’ (π β (βπ₯ β π½ (π β π₯ β§ π) β βπ₯ β ((neiβπ½)βπ)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 βwrex 3068 β wss 3947 βcfv 6542 Topctop 22615 neicnei 22821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22616 df-nei 22822 |
This theorem is referenced by: opnneirv 47627 opnneieqv 47630 |
Copyright terms: Public domain | W3C validator |