Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneir Structured version   Visualization version   GIF version

Theorem opnneir 48895
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
opnneir (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Distinct variable group:   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑆(𝑥)

Proof of Theorem opnneir
StepHypRef Expression
1 opnneir.1 . 2 (𝜑𝐽 ∈ Top)
2 anass 468 . . . 4 (((𝑥𝐽𝑆𝑥) ∧ 𝜓) ↔ (𝑥𝐽 ∧ (𝑆𝑥𝜓)))
3 opnneiss 23003 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
433expib 1122 . . . . 5 (𝐽 ∈ Top → ((𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
54anim1d 611 . . . 4 (𝐽 ∈ Top → (((𝑥𝐽𝑆𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
62, 5biimtrrid 243 . . 3 (𝐽 ∈ Top → ((𝑥𝐽 ∧ (𝑆𝑥𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
76reximdv2 3139 . 2 (𝐽 ∈ Top → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
81, 7syl 17 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3053  wss 3903  cfv 6482  Topctop 22778  neicnei 22982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-top 22779  df-nei 22983
This theorem is referenced by:  opnneirv  48896  opnneieqv  48899
  Copyright terms: Public domain W3C validator