| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneir | Structured version Visualization version GIF version | ||
| Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| Ref | Expression |
|---|---|
| opnneir | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnneir.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓))) | |
| 3 | opnneiss 23073 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) | |
| 4 | 3 | 3expib 1122 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
| 5 | 4 | anim1d 611 | . . . 4 ⊢ (𝐽 ∈ Top → (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
| 6 | 2, 5 | biimtrrid 243 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
| 7 | 6 | reximdv2 3151 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 ‘cfv 6541 Topctop 22848 neicnei 23052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-top 22849 df-nei 23053 |
| This theorem is referenced by: opnneirv 48789 opnneieqv 48792 |
| Copyright terms: Public domain | W3C validator |