Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneir Structured version   Visualization version   GIF version

Theorem opnneir 46200
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
opnneir (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Distinct variable group:   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑆(𝑥)

Proof of Theorem opnneir
StepHypRef Expression
1 opnneir.1 . 2 (𝜑𝐽 ∈ Top)
2 anass 469 . . . 4 (((𝑥𝐽𝑆𝑥) ∧ 𝜓) ↔ (𝑥𝐽 ∧ (𝑆𝑥𝜓)))
3 opnneiss 22269 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
433expib 1121 . . . . 5 (𝐽 ∈ Top → ((𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
54anim1d 611 . . . 4 (𝐽 ∈ Top → (((𝑥𝐽𝑆𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
62, 5syl5bir 242 . . 3 (𝐽 ∈ Top → ((𝑥𝐽 ∧ (𝑆𝑥𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
76reximdv2 3199 . 2 (𝐽 ∈ Top → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
81, 7syl 17 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wrex 3065  wss 3887  cfv 6433  Topctop 22042  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-nei 22249
This theorem is referenced by:  opnneirv  46201  opnneieqv  46204
  Copyright terms: Public domain W3C validator