![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneir | Structured version Visualization version GIF version |
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
opnneir | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnneir.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓))) | |
3 | opnneiss 23116 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) | |
4 | 3 | 3expib 1123 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
5 | 4 | anim1d 611 | . . . 4 ⊢ (𝐽 ∈ Top → (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
6 | 2, 5 | biimtrrid 243 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
7 | 6 | reximdv2 3163 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3069 ⊆ wss 3950 ‘cfv 6559 Topctop 22889 neicnei 23095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-top 22890 df-nei 23096 |
This theorem is referenced by: opnneirv 48778 opnneieqv 48781 |
Copyright terms: Public domain | W3C validator |