Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneir Structured version   Visualization version   GIF version

Theorem opnneir 48624
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
opnneir (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Distinct variable group:   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑆(𝑥)

Proof of Theorem opnneir
StepHypRef Expression
1 opnneir.1 . 2 (𝜑𝐽 ∈ Top)
2 anass 468 . . . 4 (((𝑥𝐽𝑆𝑥) ∧ 𝜓) ↔ (𝑥𝐽 ∧ (𝑆𝑥𝜓)))
3 opnneiss 23123 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
433expib 1120 . . . . 5 (𝐽 ∈ Top → ((𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
54anim1d 610 . . . 4 (𝐽 ∈ Top → (((𝑥𝐽𝑆𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
62, 5biimtrrid 243 . . 3 (𝐽 ∈ Top → ((𝑥𝐽 ∧ (𝑆𝑥𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)))
76reximdv2 3160 . 2 (𝐽 ∈ Top → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
81, 7syl 17 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2104  wrex 3066  wss 3963  cfv 6558  Topctop 22896  neicnei 23102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-top 22897  df-nei 23103
This theorem is referenced by:  opnneirv  48625  opnneieqv  48628
  Copyright terms: Public domain W3C validator