![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneir | Structured version Visualization version GIF version |
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
opnneir | ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnneir.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓))) | |
3 | opnneiss 23139 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) | |
4 | 3 | 3expib 1122 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
5 | 4 | anim1d 610 | . . . 4 ⊢ (𝐽 ∈ Top → (((𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) ∧ 𝜓) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
6 | 2, 5 | biimtrrid 243 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝜓)) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))) |
7 | 6 | reximdv2 3170 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6568 Topctop 22912 neicnei 23118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-top 22913 df-nei 23119 |
This theorem is referenced by: opnneirv 48577 opnneieqv 48580 |
Copyright terms: Public domain | W3C validator |