Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneir Structured version   Visualization version   GIF version

Theorem opnneir 47626
Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypothesis
Ref Expression
opnneir.1 (πœ‘ β†’ 𝐽 ∈ Top)
Assertion
Ref Expression
opnneir (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑆 βŠ† π‘₯ ∧ πœ“) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“))
Distinct variable group:   π‘₯,𝐽
Allowed substitution hints:   πœ‘(π‘₯)   πœ“(π‘₯)   𝑆(π‘₯)

Proof of Theorem opnneir
StepHypRef Expression
1 opnneir.1 . 2 (πœ‘ β†’ 𝐽 ∈ Top)
2 anass 467 . . . 4 (((π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯) ∧ πœ“) ↔ (π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ πœ“)))
3 opnneiss 22842 . . . . . 6 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†))
433expib 1120 . . . . 5 (𝐽 ∈ Top β†’ ((π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)))
54anim1d 609 . . . 4 (𝐽 ∈ Top β†’ (((π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯) ∧ πœ“) β†’ (π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“)))
62, 5biimtrrid 242 . . 3 (𝐽 ∈ Top β†’ ((π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ πœ“)) β†’ (π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“)))
76reximdv2 3162 . 2 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑆 βŠ† π‘₯ ∧ πœ“) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“))
81, 7syl 17 1 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑆 βŠ† π‘₯ ∧ πœ“) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∈ wcel 2104  βˆƒwrex 3068   βŠ† wss 3947  β€˜cfv 6542  Topctop 22615  neicnei 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22616  df-nei 22822
This theorem is referenced by:  opnneirv  47627  opnneieqv  47630
  Copyright terms: Public domain W3C validator