Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neircl Structured version   Visualization version   GIF version

Theorem neircl 48897
Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.)
Assertion
Ref Expression
neircl (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top)

Proof of Theorem neircl
Dummy variables 𝑓 𝑔 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvne0 48841 . 2 (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (nei‘𝐽) ≠ ∅)
2 n0 4319 . . 3 ((nei‘𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (nei‘𝐽))
32biimpi 216 . 2 ((nei‘𝐽) ≠ ∅ → ∃𝑓 𝑓 ∈ (nei‘𝐽))
4 df-nei 22992 . . . 4 nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
54mptrcl 6980 . . 3 (𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top)
65exlimiv 1930 . 2 (∃𝑓 𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top)
71, 3, 63syl 18 1 (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wne 2926  wrex 3054  {crab 3408  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874  cmpt 5191  cfv 6514  Topctop 22787  neicnei 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fv 6522  df-nei 22992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator