Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neircl | Structured version Visualization version GIF version |
Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
Ref | Expression |
---|---|
neircl | ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvne0 46064 | . 2 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (nei‘𝐽) ≠ ∅) | |
2 | n0 4277 | . . 3 ⊢ ((nei‘𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (nei‘𝐽)) | |
3 | 2 | biimpi 215 | . 2 ⊢ ((nei‘𝐽) ≠ ∅ → ∃𝑓 𝑓 ∈ (nei‘𝐽)) |
4 | df-nei 22157 | . . . 4 ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | |
5 | 4 | mptrcl 6866 | . . 3 ⊢ (𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
6 | 5 | exlimiv 1934 | . 2 ⊢ (∃𝑓 𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
7 | 1, 3, 6 | 3syl 18 | 1 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ↦ cmpt 5153 ‘cfv 6418 Topctop 21950 neicnei 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-nei 22157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |