![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neircl | Structured version Visualization version GIF version |
Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
Ref | Expression |
---|---|
neircl | ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvne0 48562 | . 2 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (nei‘𝐽) ≠ ∅) | |
2 | n0 4376 | . . 3 ⊢ ((nei‘𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (nei‘𝐽)) | |
3 | 2 | biimpi 216 | . 2 ⊢ ((nei‘𝐽) ≠ ∅ → ∃𝑓 𝑓 ∈ (nei‘𝐽)) |
4 | df-nei 23127 | . . . 4 ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | |
5 | 4 | mptrcl 7038 | . . 3 ⊢ (𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
6 | 5 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
7 | 1, 3, 6 | 3syl 18 | 1 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ↦ cmpt 5249 ‘cfv 6573 Topctop 22920 neicnei 23126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-nei 23127 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |