| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neircl | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| Ref | Expression |
|---|---|
| neircl | ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvne0 48837 | . 2 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (nei‘𝐽) ≠ ∅) | |
| 2 | n0 4316 | . . 3 ⊢ ((nei‘𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (nei‘𝐽)) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ ((nei‘𝐽) ≠ ∅ → ∃𝑓 𝑓 ∈ (nei‘𝐽)) |
| 4 | df-nei 22985 | . . . 4 ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | |
| 5 | 4 | mptrcl 6977 | . . 3 ⊢ (𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
| 6 | 5 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
| 7 | 1, 3, 6 | 3syl 18 | 1 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 ↦ cmpt 5188 ‘cfv 6511 Topctop 22780 neicnei 22984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-nei 22985 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |