| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neircl | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| Ref | Expression |
|---|---|
| neircl | ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvne0 49010 | . 2 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (nei‘𝐽) ≠ ∅) | |
| 2 | n0 4302 | . . 3 ⊢ ((nei‘𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (nei‘𝐽)) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ ((nei‘𝐽) ≠ ∅ → ∃𝑓 𝑓 ∈ (nei‘𝐽)) |
| 4 | df-nei 23033 | . . . 4 ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | |
| 5 | 4 | mptrcl 6947 | . . 3 ⊢ (𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
| 6 | 5 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓 ∈ (nei‘𝐽) → 𝐽 ∈ Top) |
| 7 | 1, 3, 6 | 3syl 18 | 1 ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 ↦ cmpt 5176 ‘cfv 6489 Topctop 22828 neicnei 23032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-nei 23033 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |