Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneirv Structured version   Visualization version   GIF version

Theorem opnneirv 48241
Description: A variant of opnneir 48240 with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneirv.2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
opnneirv (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneirv
StepHypRef Expression
1 opnneirv.2 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21opnneilem 48239 . 2 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
3 opnneir.1 . . 3 (𝜑𝐽 ∈ Top)
43opnneir 48240 . 2 (𝜑 → (∃𝑦𝐽 (𝑆𝑦𝜒) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒))
52, 4sylbid 239 1 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wrex 3060  wss 3947  cfv 6554  Topctop 22886  neicnei 23092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-top 22887  df-nei 23093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator