MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somo Structured version   Visualization version   GIF version

Theorem somo 5635
Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
somo (𝑅 Or 𝐴 → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem somo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝑅𝑧𝑥𝑅𝑧))
21notbid 318 . . . . . . . . . 10 (𝑦 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑥𝑅𝑧))
32rspcv 3618 . . . . . . . . 9 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑧 → ¬ 𝑥𝑅𝑧))
4 breq1 5151 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
54notbid 318 . . . . . . . . . 10 (𝑦 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑧𝑅𝑥))
65rspcv 3618 . . . . . . . . 9 (𝑧𝐴 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 → ¬ 𝑧𝑅𝑥))
73, 6im2anan9 620 . . . . . . . 8 ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑧 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)))
87ancomsd 465 . . . . . . 7 ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)))
98imp 406 . . . . . 6 (((𝑥𝐴𝑧𝐴) ∧ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧)) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))
10 ioran 985 . . . . . . 7 (¬ (𝑥𝑅𝑧𝑧𝑅𝑥) ↔ (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))
11 solin 5623 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
12 df-3or 1087 . . . . . . . . . 10 ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥))
1311, 12sylib 218 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥))
14 or32 925 . . . . . . . . 9 (((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧𝑧𝑅𝑥) ∨ 𝑥 = 𝑧))
1513, 14sylib 218 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑧𝑅𝑥) ∨ 𝑥 = 𝑧))
1615ord 864 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (¬ (𝑥𝑅𝑧𝑧𝑅𝑥) → 𝑥 = 𝑧))
1710, 16biimtrrid 243 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥) → 𝑥 = 𝑧))
189, 17syl5 34 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (((𝑥𝐴𝑧𝐴) ∧ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧)) → 𝑥 = 𝑧))
1918exp4b 430 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑧𝐴) → ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))))
2019pm2.43d 53 . . 3 (𝑅 Or 𝐴 → ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧)))
2120ralrimivv 3198 . 2 (𝑅 Or 𝐴 → ∀𝑥𝐴𝑧𝐴 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))
22 breq2 5152 . . . . 5 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
2322notbid 318 . . . 4 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
2423ralbidv 3176 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧))
2524rmo4 3739 . 2 (∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))
2621, 25sylibr 234 1 (𝑅 Or 𝐴 → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  wcel 2106  wral 3059  ∃*wrmo 3377   class class class wbr 5148   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rmo 3378  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-so 5598
This theorem is referenced by:  wereu  5685  wereu2  5686  nomaxmo  27758  nominmo  27759
  Copyright terms: Public domain W3C validator