Step | Hyp | Ref
| Expression |
1 | | breq1 5039 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
2 | 1 | notbid 321 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑥𝑅𝑧)) |
3 | 2 | rspcv 3538 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧 → ¬ 𝑥𝑅𝑧)) |
4 | | breq1 5039 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) |
5 | 4 | notbid 321 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑧𝑅𝑥)) |
6 | 5 | rspcv 3538 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → ¬ 𝑧𝑅𝑥)) |
7 | 3, 6 | im2anan9 622 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))) |
8 | 7 | ancomsd 469 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))) |
9 | 8 | imp 410 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧)) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)) |
10 | | ioran 981 |
. . . . . . 7
⊢ (¬
(𝑥𝑅𝑧 ∨ 𝑧𝑅𝑥) ↔ (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)) |
11 | | solin 5471 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) |
12 | | df-3or 1085 |
. . . . . . . . . 10
⊢ ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧) ∨ 𝑧𝑅𝑥)) |
13 | 11, 12 | sylib 221 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧) ∨ 𝑧𝑅𝑥)) |
14 | | or32 923 |
. . . . . . . . 9
⊢ (((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧) ∨ 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑥) ∨ 𝑥 = 𝑧)) |
15 | 13, 14 | sylib 221 |
. . . . . . . 8
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑥) ∨ 𝑥 = 𝑧)) |
16 | 15 | ord 861 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (¬ (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑥) → 𝑥 = 𝑧)) |
17 | 10, 16 | syl5bir 246 |
. . . . . 6
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥) → 𝑥 = 𝑧)) |
18 | 9, 17 | syl5 34 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧)) → 𝑥 = 𝑧)) |
19 | 18 | exp4b 434 |
. . . 4
⊢ (𝑅 Or 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧)))) |
20 | 19 | pm2.43d 53 |
. . 3
⊢ (𝑅 Or 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))) |
21 | 20 | ralrimivv 3119 |
. 2
⊢ (𝑅 Or 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧)) |
22 | | breq2 5040 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) |
23 | 22 | notbid 321 |
. . . 4
⊢ (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧)) |
24 | 23 | ralbidv 3126 |
. . 3
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧)) |
25 | 24 | rmo4 3646 |
. 2
⊢
(∃*𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧)) |
26 | 21, 25 | sylibr 237 |
1
⊢ (𝑅 Or 𝐴 → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |