Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrnepnf | Structured version Visualization version GIF version |
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnepnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 997 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) | |
2 | elxr 12834 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
3 | df-3or 1086 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
4 | or32 922 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) | |
5 | 2, 3, 4 | 3bitri 296 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) |
6 | df-ne 2945 | . . 3 ⊢ (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞) | |
7 | 5, 6 | anbi12i 626 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞)) |
8 | renepnf 11007 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
9 | mnfnepnf 11015 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
10 | neeq1 3007 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞)) | |
11 | 9, 10 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 ≠ +∞) |
12 | 8, 11 | jaoi 853 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞) |
13 | 12 | neneqd 2949 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞) |
14 | 13 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) |
15 | 1, 7, 14 | 3bitr4i 302 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ℝcr 10854 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-nel 3051 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 df-pr 4569 df-uni 4845 df-pnf 10995 df-mnf 10996 df-xr 10997 |
This theorem is referenced by: xaddnepnf 12953 xlt2addrd 31060 xrlexaddrp 42845 xrnpnfmnf 42969 |
Copyright terms: Public domain | W3C validator |