![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrnepnf | Structured version Visualization version GIF version |
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnepnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 999 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) | |
2 | elxr 13092 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
3 | df-3or 1088 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
4 | or32 924 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) | |
5 | 2, 3, 4 | 3bitri 296 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) |
6 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞) | |
7 | 5, 6 | anbi12i 627 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞)) |
8 | renepnf 11258 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
9 | mnfnepnf 11266 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
10 | neeq1 3003 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞)) | |
11 | 9, 10 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 ≠ +∞) |
12 | 8, 11 | jaoi 855 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞) |
13 | 12 | neneqd 2945 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞) |
14 | 13 | pm4.71i 560 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) |
15 | 1, 7, 14 | 3bitr4i 302 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ℝcr 11105 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-nel 3047 df-rab 3433 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 df-pnf 11246 df-mnf 11247 df-xr 11248 |
This theorem is referenced by: xaddnepnf 13212 xlt2addrd 31958 xrlexaddrp 44048 xrnpnfmnf 44171 |
Copyright terms: Public domain | W3C validator |