MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnepnf Structured version   Visualization version   GIF version

Theorem xrnepnf 12710
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnepnf ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))

Proof of Theorem xrnepnf
StepHypRef Expression
1 pm5.61 1001 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
2 elxr 12708 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 1090 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
4 or32 926 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
52, 3, 43bitri 300 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
6 df-ne 2941 . . 3 (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞)
75, 6anbi12i 630 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞))
8 renepnf 10881 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
9 mnfnepnf 10889 . . . . . 6 -∞ ≠ +∞
10 neeq1 3003 . . . . . 6 (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞))
119, 10mpbiri 261 . . . . 5 (𝐴 = -∞ → 𝐴 ≠ +∞)
128, 11jaoi 857 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞)
1312neneqd 2945 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞)
1413pm4.71i 563 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
151, 7, 143bitr4i 306 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 847  w3o 1088   = wceq 1543  wcel 2110  wne 2940  cr 10728  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-nel 3047  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-pw 4515  df-sn 4542  df-pr 4544  df-uni 4820  df-pnf 10869  df-mnf 10870  df-xr 10871
This theorem is referenced by:  xaddnepnf  12827  xlt2addrd  30801  xrlexaddrp  42564  xrnpnfmnf  42690
  Copyright terms: Public domain W3C validator