MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnepnf Structured version   Visualization version   GIF version

Theorem xrnepnf 12363
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnepnf ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))

Proof of Theorem xrnepnf
StepHypRef Expression
1 pm5.61 995 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
2 elxr 12361 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 1081 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
4 or32 920 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
52, 3, 43bitri 298 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
6 df-ne 2985 . . 3 (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞)
75, 6anbi12i 626 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞))
8 renepnf 10535 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
9 mnfnepnf 10544 . . . . . 6 -∞ ≠ +∞
10 neeq1 3046 . . . . . 6 (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞))
119, 10mpbiri 259 . . . . 5 (𝐴 = -∞ → 𝐴 ≠ +∞)
128, 11jaoi 852 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞)
1312neneqd 2989 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞)
1413pm4.71i 560 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
151, 7, 143bitr4i 304 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wo 842  w3o 1079   = wceq 1522  wcel 2081  wne 2984  cr 10382  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-pw 4455  df-sn 4473  df-pr 4475  df-uni 4746  df-pnf 10523  df-mnf 10524  df-xr 10525
This theorem is referenced by:  xaddnepnf  12480  xlt2addrd  30170  xrlexaddrp  41180  xrnpnfmnf  41312
  Copyright terms: Public domain W3C validator