MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmss Structured version   Visualization version   GIF version

Theorem xrinfmss 13293
Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrinfmss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmss
StepHypRef Expression
1 xrinfmsslem 13291 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 ssdifss 4134 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*)
3 ssxr 11287 . . . . 5 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
4 3orass 1088 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
5 pnfex 11271 . . . . . . . . 9 +∞ ∈ V
65snid 4663 . . . . . . . 8 +∞ ∈ {+∞}
7 elndif 4127 . . . . . . . 8 (+∞ ∈ {+∞} → ¬ +∞ ∈ (𝐴 ∖ {+∞}))
8 biorf 933 . . . . . . . 8 (¬ +∞ ∈ (𝐴 ∖ {+∞}) → (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
96, 7, 8mp2b 10 . . . . . . 7 (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
109orbi2i 909 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
114, 10bitr4i 277 . . . . 5 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
123, 11sylib 217 . . . 4 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
13 xrinfmsslem 13291 . . . 4 (((𝐴 ∖ {+∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
142, 12, 13syl2anc2 583 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
15 xrinfmexpnf 13289 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)))
165snss 4788 . . . . . . 7 (+∞ ∈ 𝐴 ↔ {+∞} ⊆ 𝐴)
17 undif 4480 . . . . . . . 8 ({+∞} ⊆ 𝐴 ↔ ({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴)
18 uncom 4152 . . . . . . . . 9 ({+∞} ∪ (𝐴 ∖ {+∞})) = ((𝐴 ∖ {+∞}) ∪ {+∞})
1918eqeq1i 2735 . . . . . . . 8 (({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2017, 19bitri 274 . . . . . . 7 ({+∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2116, 20bitri 274 . . . . . 6 (+∞ ∈ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
22 raleq 3320 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
23 rexeq 3319 . . . . . . . . 9 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2423imbi2d 339 . . . . . . . 8 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralbidv 3175 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2622, 25anbi12d 629 . . . . . 6 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2721, 26sylbi 216 . . . . 5 (+∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2827rexbidv 3176 . . . 4 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2915, 28imbitrid 243 . . 3 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3014, 29mpan9 505 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
31 ssxr 11287 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
32 df-3or 1086 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
33 or32 922 . . . 4 (((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3432, 33bitri 274 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3531, 34sylib 217 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
361, 30, 35mpjaodan 955 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3o 1084   = wceq 1539  wcel 2104  wral 3059  wrex 3068  cdif 3944  cun 3945  wss 3947  {csn 4627   class class class wbr 5147  cr 11111  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251   < clt 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451
This theorem is referenced by:  xrinfmss2  13294  infxrcl  13316  infxrlb  13317  infxrgelb  13318  xrge0infss  32240  infxrglb  44348  infxrunb2  44376
  Copyright terms: Public domain W3C validator