MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmss Structured version   Visualization version   GIF version

Theorem xrinfmss 13326
Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrinfmss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmss
StepHypRef Expression
1 xrinfmsslem 13324 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 ssdifss 4115 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*)
3 ssxr 11304 . . . . 5 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
4 3orass 1089 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
5 pnfex 11288 . . . . . . . . 9 +∞ ∈ V
65snid 4638 . . . . . . . 8 +∞ ∈ {+∞}
7 elndif 4108 . . . . . . . 8 (+∞ ∈ {+∞} → ¬ +∞ ∈ (𝐴 ∖ {+∞}))
8 biorf 936 . . . . . . . 8 (¬ +∞ ∈ (𝐴 ∖ {+∞}) → (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
96, 7, 8mp2b 10 . . . . . . 7 (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
109orbi2i 912 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
114, 10bitr4i 278 . . . . 5 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
123, 11sylib 218 . . . 4 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
13 xrinfmsslem 13324 . . . 4 (((𝐴 ∖ {+∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
142, 12, 13syl2anc2 585 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
15 xrinfmexpnf 13322 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)))
165snss 4761 . . . . . . 7 (+∞ ∈ 𝐴 ↔ {+∞} ⊆ 𝐴)
17 undif 4457 . . . . . . . 8 ({+∞} ⊆ 𝐴 ↔ ({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴)
18 uncom 4133 . . . . . . . . 9 ({+∞} ∪ (𝐴 ∖ {+∞})) = ((𝐴 ∖ {+∞}) ∪ {+∞})
1918eqeq1i 2740 . . . . . . . 8 (({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2017, 19bitri 275 . . . . . . 7 ({+∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2116, 20bitri 275 . . . . . 6 (+∞ ∈ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
22 raleq 3302 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
23 rexeq 3301 . . . . . . . . 9 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2423imbi2d 340 . . . . . . . 8 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralbidv 3163 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2622, 25anbi12d 632 . . . . . 6 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2721, 26sylbi 217 . . . . 5 (+∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2827rexbidv 3164 . . . 4 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2915, 28imbitrid 244 . . 3 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3014, 29mpan9 506 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
31 ssxr 11304 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
32 df-3or 1087 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
33 or32 925 . . . 4 (((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3432, 33bitri 275 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3531, 34sylib 218 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
361, 30, 35mpjaodan 960 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cdif 3923  cun 3924  wss 3926  {csn 4601   class class class wbr 5119  cr 11128  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469
This theorem is referenced by:  xrinfmss2  13327  infxrcl  13350  infxrlb  13351  infxrgelb  13352  xrge0infss  32737  infxrglb  45367  infxrunb2  45395
  Copyright terms: Public domain W3C validator