MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmss Structured version   Visualization version   GIF version

Theorem xrinfmss 12973
Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrinfmss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmss
StepHypRef Expression
1 xrinfmsslem 12971 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 ssdifss 4066 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*)
3 ssxr 10975 . . . . 5 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
4 3orass 1088 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
5 pnfex 10959 . . . . . . . . 9 +∞ ∈ V
65snid 4594 . . . . . . . 8 +∞ ∈ {+∞}
7 elndif 4059 . . . . . . . 8 (+∞ ∈ {+∞} → ¬ +∞ ∈ (𝐴 ∖ {+∞}))
8 biorf 933 . . . . . . . 8 (¬ +∞ ∈ (𝐴 ∖ {+∞}) → (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
96, 7, 8mp2b 10 . . . . . . 7 (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
109orbi2i 909 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
114, 10bitr4i 277 . . . . 5 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
123, 11sylib 217 . . . 4 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
13 xrinfmsslem 12971 . . . 4 (((𝐴 ∖ {+∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
142, 12, 13syl2anc2 584 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
15 xrinfmexpnf 12969 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)))
165snss 4716 . . . . . . 7 (+∞ ∈ 𝐴 ↔ {+∞} ⊆ 𝐴)
17 undif 4412 . . . . . . . 8 ({+∞} ⊆ 𝐴 ↔ ({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴)
18 uncom 4083 . . . . . . . . 9 ({+∞} ∪ (𝐴 ∖ {+∞})) = ((𝐴 ∖ {+∞}) ∪ {+∞})
1918eqeq1i 2743 . . . . . . . 8 (({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2017, 19bitri 274 . . . . . . 7 ({+∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2116, 20bitri 274 . . . . . 6 (+∞ ∈ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
22 raleq 3333 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
23 rexeq 3334 . . . . . . . . 9 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2423imbi2d 340 . . . . . . . 8 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralbidv 3120 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2622, 25anbi12d 630 . . . . . 6 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2721, 26sylbi 216 . . . . 5 (+∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2827rexbidv 3225 . . . 4 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2915, 28syl5ib 243 . . 3 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3014, 29mpan9 506 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
31 ssxr 10975 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
32 df-3or 1086 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
33 or32 922 . . . 4 (((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3432, 33bitri 274 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3531, 34sylib 217 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
361, 30, 35mpjaodan 955 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  cun 3881  wss 3883  {csn 4558   class class class wbr 5070  cr 10801  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  xrinfmss2  12974  infxrcl  12996  infxrlb  12997  infxrgelb  12998  xrge0infss  30985  infxrglb  42769  infxrunb2  42797
  Copyright terms: Public domain W3C validator