MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmss Structured version   Visualization version   GIF version

Theorem xrinfmss 13285
Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrinfmss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmss
StepHypRef Expression
1 xrinfmsslem 13283 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 ssdifss 4134 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*)
3 ssxr 11279 . . . . 5 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
4 3orass 1090 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
5 pnfex 11263 . . . . . . . . 9 +∞ ∈ V
65snid 4663 . . . . . . . 8 +∞ ∈ {+∞}
7 elndif 4127 . . . . . . . 8 (+∞ ∈ {+∞} → ¬ +∞ ∈ (𝐴 ∖ {+∞}))
8 biorf 935 . . . . . . . 8 (¬ +∞ ∈ (𝐴 ∖ {+∞}) → (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
96, 7, 8mp2b 10 . . . . . . 7 (-∞ ∈ (𝐴 ∖ {+∞}) ↔ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})))
109orbi2i 911 . . . . . 6 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ (+∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞}))))
114, 10bitr4i 277 . . . . 5 (((𝐴 ∖ {+∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {+∞}) ∨ -∞ ∈ (𝐴 ∖ {+∞})) ↔ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
123, 11sylib 217 . . . 4 ((𝐴 ∖ {+∞}) ⊆ ℝ* → ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞})))
13 xrinfmsslem 13283 . . . 4 (((𝐴 ∖ {+∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {+∞}) ⊆ ℝ ∨ -∞ ∈ (𝐴 ∖ {+∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
142, 12, 13syl2anc2 585 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)))
15 xrinfmexpnf 13281 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)))
165snss 4788 . . . . . . 7 (+∞ ∈ 𝐴 ↔ {+∞} ⊆ 𝐴)
17 undif 4480 . . . . . . . 8 ({+∞} ⊆ 𝐴 ↔ ({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴)
18 uncom 4152 . . . . . . . . 9 ({+∞} ∪ (𝐴 ∖ {+∞})) = ((𝐴 ∖ {+∞}) ∪ {+∞})
1918eqeq1i 2737 . . . . . . . 8 (({+∞} ∪ (𝐴 ∖ {+∞})) = 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2017, 19bitri 274 . . . . . . 7 ({+∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
2116, 20bitri 274 . . . . . 6 (+∞ ∈ 𝐴 ↔ ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
22 raleq 3322 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
23 rexeq 3321 . . . . . . . . 9 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2423imbi2d 340 . . . . . . . 8 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralbidv 3177 . . . . . . 7 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2622, 25anbi12d 631 . . . . . 6 (((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2721, 26sylbi 216 . . . . 5 (+∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2827rexbidv 3178 . . . 4 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ((𝐴 ∖ {+∞}) ∪ {+∞})𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2915, 28imbitrid 243 . . 3 (+∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∖ {+∞})𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3014, 29mpan9 507 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
31 ssxr 11279 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
32 df-3or 1088 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
33 or32 924 . . . 4 (((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3432, 33bitri 274 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
3531, 34sylib 217 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴) ∨ +∞ ∈ 𝐴))
361, 30, 35mpjaodan 957 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cdif 3944  cun 3945  wss 3947  {csn 4627   class class class wbr 5147  cr 11105  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  xrinfmss2  13286  infxrcl  13308  infxrlb  13309  infxrgelb  13310  xrge0infss  31960  infxrglb  44036  infxrunb2  44064
  Copyright terms: Public domain W3C validator