MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhalfpilem Structured version   Visualization version   GIF version

Theorem sinhalfpilem 25525
Description: Lemma for sinhalfpi 25530 and coshalfpi 25531. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 0lt1 11427 . . . . . 6 0 < 1
2 0re 10908 . . . . . . 7 0 ∈ ℝ
3 1re 10906 . . . . . . 7 1 ∈ ℝ
42, 3ltnsymi 11024 . . . . . 6 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . . 5 ¬ 1 < 0
6 lt0neg1 11411 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
73, 6ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
85, 7mtbi 321 . . . 4 ¬ 0 < -1
9 pire 25520 . . . . . . . 8 π ∈ ℝ
109rehalfcli 12152 . . . . . . 7 (π / 2) ∈ ℝ
11 2re 11977 . . . . . . . 8 2 ∈ ℝ
12 pipos 25522 . . . . . . . 8 0 < π
13 2pos 12006 . . . . . . . 8 0 < 2
149, 11, 12, 13divgt0ii 11822 . . . . . . 7 0 < (π / 2)
15 4re 11987 . . . . . . . . 9 4 ∈ ℝ
16 pigt2lt4 25518 . . . . . . . . . 10 (2 < π ∧ π < 4)
1716simpri 485 . . . . . . . . 9 π < 4
189, 15, 17ltleii 11028 . . . . . . . 8 π ≤ 4
1911, 13pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
20 ledivmul 11781 . . . . . . . . . 10 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
219, 11, 19, 20mp3an 1459 . . . . . . . . 9 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
22 2t2e4 12067 . . . . . . . . . 10 (2 · 2) = 4
2322breq2i 5078 . . . . . . . . 9 (π ≤ (2 · 2) ↔ π ≤ 4)
2421, 23bitr2i 275 . . . . . . . 8 (π ≤ 4 ↔ (π / 2) ≤ 2)
2518, 24mpbi 229 . . . . . . 7 (π / 2) ≤ 2
26 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
27 elioc2 13071 . . . . . . . 8 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2)))
2826, 11, 27mp2an 688 . . . . . . 7 ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2))
2910, 14, 25, 28mpbir3an 1339 . . . . . 6 (π / 2) ∈ (0(,]2)
30 sin02gt0 15829 . . . . . 6 ((π / 2) ∈ (0(,]2) → 0 < (sin‘(π / 2)))
3129, 30ax-mp 5 . . . . 5 0 < (sin‘(π / 2))
32 breq2 5074 . . . . 5 ((sin‘(π / 2)) = -1 → (0 < (sin‘(π / 2)) ↔ 0 < -1))
3331, 32mpbii 232 . . . 4 ((sin‘(π / 2)) = -1 → 0 < -1)
348, 33mto 196 . . 3 ¬ (sin‘(π / 2)) = -1
35 sq1 13840 . . . . . 6 (1↑2) = 1
36 resincl 15777 . . . . . . . . . . . . . 14 ((π / 2) ∈ ℝ → (sin‘(π / 2)) ∈ ℝ)
3710, 36ax-mp 5 . . . . . . . . . . . . 13 (sin‘(π / 2)) ∈ ℝ
3837, 31gt0ne0ii 11441 . . . . . . . . . . . 12 (sin‘(π / 2)) ≠ 0
3938neii 2944 . . . . . . . . . . 11 ¬ (sin‘(π / 2)) = 0
40 2ne0 12007 . . . . . . . . . . . . . 14 2 ≠ 0
4140neii 2944 . . . . . . . . . . . . 13 ¬ 2 = 0
429recni 10920 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43 2cn 11978 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
4442, 43, 40divcan2i 11648 . . . . . . . . . . . . . . . . 17 (2 · (π / 2)) = π
4544fveq2i 6759 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (sin‘π)
4610recni 10920 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℂ
47 sin2t 15814 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
4945, 48eqtr3i 2768 . . . . . . . . . . . . . . 15 (sin‘π) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
50 sinpi 25519 . . . . . . . . . . . . . . 15 (sin‘π) = 0
5149, 50eqtr3i 2768 . . . . . . . . . . . . . 14 (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0
52 sincl 15763 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(π / 2)) ∈ ℂ)
5346, 52ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(π / 2)) ∈ ℂ
54 coscl 15764 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (cos‘(π / 2)) ∈ ℂ)
5546, 54ax-mp 5 . . . . . . . . . . . . . . . 16 (cos‘(π / 2)) ∈ ℂ
5653, 55mulcli 10913 . . . . . . . . . . . . . . 15 ((sin‘(π / 2)) · (cos‘(π / 2))) ∈ ℂ
5743, 56mul0ori 11553 . . . . . . . . . . . . . 14 ((2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0 ↔ (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0))
5851, 57mpbi 229 . . . . . . . . . . . . 13 (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0)
5941, 58mtpor 1774 . . . . . . . . . . . 12 ((sin‘(π / 2)) · (cos‘(π / 2))) = 0
6053, 55mul0ori 11553 . . . . . . . . . . . 12 (((sin‘(π / 2)) · (cos‘(π / 2))) = 0 ↔ ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0))
6159, 60mpbi 229 . . . . . . . . . . 11 ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0)
6239, 61mtpor 1774 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6362oveq1i 7265 . . . . . . . . 9 ((cos‘(π / 2))↑2) = (0↑2)
64 sq0 13837 . . . . . . . . 9 (0↑2) = 0
6563, 64eqtri 2766 . . . . . . . 8 ((cos‘(π / 2))↑2) = 0
6665oveq2i 7266 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = (((sin‘(π / 2))↑2) + 0)
67 sincossq 15813 . . . . . . . 8 ((π / 2) ∈ ℂ → (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1)
6846, 67ax-mp 5 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1
6966, 68eqtr3i 2768 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = 1
7053sqcli 13826 . . . . . . 7 ((sin‘(π / 2))↑2) ∈ ℂ
7170addid1i 11092 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = ((sin‘(π / 2))↑2)
7235, 69, 713eqtr2ri 2773 . . . . 5 ((sin‘(π / 2))↑2) = (1↑2)
73 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
7453, 73sqeqori 13858 . . . . 5 (((sin‘(π / 2))↑2) = (1↑2) ↔ ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1))
7572, 74mpbi 229 . . . 4 ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1)
7675ori 857 . . 3 (¬ (sin‘(π / 2)) = 1 → (sin‘(π / 2)) = -1)
7734, 76mt3 200 . 2 (sin‘(π / 2)) = 1
7877, 62pm3.2i 470 1 ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  -cneg 11136   / cdiv 11562  2c2 11958  4c4 11960  (,]cioc 13009  cexp 13710  sincsin 15701  cosccos 15702  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  sinhalfpi  25530  coshalfpi  25531
  Copyright terms: Public domain W3C validator