MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhalfpilem Structured version   Visualization version   GIF version

Theorem sinhalfpilem 26523
Description: Lemma for sinhalfpi 26528 and coshalfpi 26529. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 0lt1 11812 . . . . . 6 0 < 1
2 0re 11292 . . . . . . 7 0 ∈ ℝ
3 1re 11290 . . . . . . 7 1 ∈ ℝ
42, 3ltnsymi 11409 . . . . . 6 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . . 5 ¬ 1 < 0
6 lt0neg1 11796 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
73, 6ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
85, 7mtbi 322 . . . 4 ¬ 0 < -1
9 pire 26518 . . . . . . . 8 π ∈ ℝ
109rehalfcli 12542 . . . . . . 7 (π / 2) ∈ ℝ
11 2re 12367 . . . . . . . 8 2 ∈ ℝ
12 pipos 26520 . . . . . . . 8 0 < π
13 2pos 12396 . . . . . . . 8 0 < 2
149, 11, 12, 13divgt0ii 12212 . . . . . . 7 0 < (π / 2)
15 4re 12377 . . . . . . . . 9 4 ∈ ℝ
16 pigt2lt4 26516 . . . . . . . . . 10 (2 < π ∧ π < 4)
1716simpri 485 . . . . . . . . 9 π < 4
189, 15, 17ltleii 11413 . . . . . . . 8 π ≤ 4
1911, 13pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
20 ledivmul 12171 . . . . . . . . . 10 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
219, 11, 19, 20mp3an 1461 . . . . . . . . 9 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
22 2t2e4 12457 . . . . . . . . . 10 (2 · 2) = 4
2322breq2i 5174 . . . . . . . . 9 (π ≤ (2 · 2) ↔ π ≤ 4)
2421, 23bitr2i 276 . . . . . . . 8 (π ≤ 4 ↔ (π / 2) ≤ 2)
2518, 24mpbi 230 . . . . . . 7 (π / 2) ≤ 2
26 0xr 11337 . . . . . . . 8 0 ∈ ℝ*
27 elioc2 13470 . . . . . . . 8 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2)))
2826, 11, 27mp2an 691 . . . . . . 7 ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2))
2910, 14, 25, 28mpbir3an 1341 . . . . . 6 (π / 2) ∈ (0(,]2)
30 sin02gt0 16240 . . . . . 6 ((π / 2) ∈ (0(,]2) → 0 < (sin‘(π / 2)))
3129, 30ax-mp 5 . . . . 5 0 < (sin‘(π / 2))
32 breq2 5170 . . . . 5 ((sin‘(π / 2)) = -1 → (0 < (sin‘(π / 2)) ↔ 0 < -1))
3331, 32mpbii 233 . . . 4 ((sin‘(π / 2)) = -1 → 0 < -1)
348, 33mto 197 . . 3 ¬ (sin‘(π / 2)) = -1
35 sq1 14244 . . . . . 6 (1↑2) = 1
36 resincl 16188 . . . . . . . . . . . . . 14 ((π / 2) ∈ ℝ → (sin‘(π / 2)) ∈ ℝ)
3710, 36ax-mp 5 . . . . . . . . . . . . 13 (sin‘(π / 2)) ∈ ℝ
3837, 31gt0ne0ii 11826 . . . . . . . . . . . 12 (sin‘(π / 2)) ≠ 0
3938neii 2948 . . . . . . . . . . 11 ¬ (sin‘(π / 2)) = 0
40 2ne0 12397 . . . . . . . . . . . . . 14 2 ≠ 0
4140neii 2948 . . . . . . . . . . . . 13 ¬ 2 = 0
429recni 11304 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43 2cn 12368 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
4442, 43, 40divcan2i 12037 . . . . . . . . . . . . . . . . 17 (2 · (π / 2)) = π
4544fveq2i 6923 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (sin‘π)
4610recni 11304 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℂ
47 sin2t 16225 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
4945, 48eqtr3i 2770 . . . . . . . . . . . . . . 15 (sin‘π) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
50 sinpi 26517 . . . . . . . . . . . . . . 15 (sin‘π) = 0
5149, 50eqtr3i 2770 . . . . . . . . . . . . . 14 (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0
52 sincl 16174 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(π / 2)) ∈ ℂ)
5346, 52ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(π / 2)) ∈ ℂ
54 coscl 16175 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (cos‘(π / 2)) ∈ ℂ)
5546, 54ax-mp 5 . . . . . . . . . . . . . . . 16 (cos‘(π / 2)) ∈ ℂ
5653, 55mulcli 11297 . . . . . . . . . . . . . . 15 ((sin‘(π / 2)) · (cos‘(π / 2))) ∈ ℂ
5743, 56mul0ori 11938 . . . . . . . . . . . . . 14 ((2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0 ↔ (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0))
5851, 57mpbi 230 . . . . . . . . . . . . 13 (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0)
5941, 58mtpor 1768 . . . . . . . . . . . 12 ((sin‘(π / 2)) · (cos‘(π / 2))) = 0
6053, 55mul0ori 11938 . . . . . . . . . . . 12 (((sin‘(π / 2)) · (cos‘(π / 2))) = 0 ↔ ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0))
6159, 60mpbi 230 . . . . . . . . . . 11 ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0)
6239, 61mtpor 1768 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6362oveq1i 7458 . . . . . . . . 9 ((cos‘(π / 2))↑2) = (0↑2)
64 sq0 14241 . . . . . . . . 9 (0↑2) = 0
6563, 64eqtri 2768 . . . . . . . 8 ((cos‘(π / 2))↑2) = 0
6665oveq2i 7459 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = (((sin‘(π / 2))↑2) + 0)
67 sincossq 16224 . . . . . . . 8 ((π / 2) ∈ ℂ → (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1)
6846, 67ax-mp 5 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1
6966, 68eqtr3i 2770 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = 1
7053sqcli 14230 . . . . . . 7 ((sin‘(π / 2))↑2) ∈ ℂ
7170addridi 11477 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = ((sin‘(π / 2))↑2)
7235, 69, 713eqtr2ri 2775 . . . . 5 ((sin‘(π / 2))↑2) = (1↑2)
73 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
7453, 73sqeqori 14263 . . . . 5 (((sin‘(π / 2))↑2) = (1↑2) ↔ ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1))
7572, 74mpbi 230 . . . 4 ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1)
7675ori 860 . . 3 (¬ (sin‘(π / 2)) = 1 → (sin‘(π / 2)) = -1)
7734, 76mt3 201 . 2 (sin‘(π / 2)) = 1
7877, 62pm3.2i 470 1 ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  2c2 12348  4c4 12350  (,]cioc 13408  cexp 14112  sincsin 16111  cosccos 16112  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  sinhalfpi  26528  coshalfpi  26529
  Copyright terms: Public domain W3C validator