MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhalfpilem Structured version   Visualization version   GIF version

Theorem sinhalfpilem 25325
Description: Lemma for sinhalfpi 25330 and coshalfpi 25331. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 0lt1 11337 . . . . . 6 0 < 1
2 0re 10818 . . . . . . 7 0 ∈ ℝ
3 1re 10816 . . . . . . 7 1 ∈ ℝ
42, 3ltnsymi 10934 . . . . . 6 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . . 5 ¬ 1 < 0
6 lt0neg1 11321 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
73, 6ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
85, 7mtbi 325 . . . 4 ¬ 0 < -1
9 pire 25320 . . . . . . . 8 π ∈ ℝ
109rehalfcli 12062 . . . . . . 7 (π / 2) ∈ ℝ
11 2re 11887 . . . . . . . 8 2 ∈ ℝ
12 pipos 25322 . . . . . . . 8 0 < π
13 2pos 11916 . . . . . . . 8 0 < 2
149, 11, 12, 13divgt0ii 11732 . . . . . . 7 0 < (π / 2)
15 4re 11897 . . . . . . . . 9 4 ∈ ℝ
16 pigt2lt4 25318 . . . . . . . . . 10 (2 < π ∧ π < 4)
1716simpri 489 . . . . . . . . 9 π < 4
189, 15, 17ltleii 10938 . . . . . . . 8 π ≤ 4
1911, 13pm3.2i 474 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
20 ledivmul 11691 . . . . . . . . . 10 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
219, 11, 19, 20mp3an 1463 . . . . . . . . 9 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
22 2t2e4 11977 . . . . . . . . . 10 (2 · 2) = 4
2322breq2i 5051 . . . . . . . . 9 (π ≤ (2 · 2) ↔ π ≤ 4)
2421, 23bitr2i 279 . . . . . . . 8 (π ≤ 4 ↔ (π / 2) ≤ 2)
2518, 24mpbi 233 . . . . . . 7 (π / 2) ≤ 2
26 0xr 10863 . . . . . . . 8 0 ∈ ℝ*
27 elioc2 12981 . . . . . . . 8 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2)))
2826, 11, 27mp2an 692 . . . . . . 7 ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2))
2910, 14, 25, 28mpbir3an 1343 . . . . . 6 (π / 2) ∈ (0(,]2)
30 sin02gt0 15734 . . . . . 6 ((π / 2) ∈ (0(,]2) → 0 < (sin‘(π / 2)))
3129, 30ax-mp 5 . . . . 5 0 < (sin‘(π / 2))
32 breq2 5047 . . . . 5 ((sin‘(π / 2)) = -1 → (0 < (sin‘(π / 2)) ↔ 0 < -1))
3331, 32mpbii 236 . . . 4 ((sin‘(π / 2)) = -1 → 0 < -1)
348, 33mto 200 . . 3 ¬ (sin‘(π / 2)) = -1
35 sq1 13747 . . . . . 6 (1↑2) = 1
36 resincl 15682 . . . . . . . . . . . . . 14 ((π / 2) ∈ ℝ → (sin‘(π / 2)) ∈ ℝ)
3710, 36ax-mp 5 . . . . . . . . . . . . 13 (sin‘(π / 2)) ∈ ℝ
3837, 31gt0ne0ii 11351 . . . . . . . . . . . 12 (sin‘(π / 2)) ≠ 0
3938neii 2937 . . . . . . . . . . 11 ¬ (sin‘(π / 2)) = 0
40 2ne0 11917 . . . . . . . . . . . . . 14 2 ≠ 0
4140neii 2937 . . . . . . . . . . . . 13 ¬ 2 = 0
429recni 10830 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43 2cn 11888 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
4442, 43, 40divcan2i 11558 . . . . . . . . . . . . . . . . 17 (2 · (π / 2)) = π
4544fveq2i 6709 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (sin‘π)
4610recni 10830 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℂ
47 sin2t 15719 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
4945, 48eqtr3i 2764 . . . . . . . . . . . . . . 15 (sin‘π) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
50 sinpi 25319 . . . . . . . . . . . . . . 15 (sin‘π) = 0
5149, 50eqtr3i 2764 . . . . . . . . . . . . . 14 (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0
52 sincl 15668 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(π / 2)) ∈ ℂ)
5346, 52ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(π / 2)) ∈ ℂ
54 coscl 15669 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (cos‘(π / 2)) ∈ ℂ)
5546, 54ax-mp 5 . . . . . . . . . . . . . . . 16 (cos‘(π / 2)) ∈ ℂ
5653, 55mulcli 10823 . . . . . . . . . . . . . . 15 ((sin‘(π / 2)) · (cos‘(π / 2))) ∈ ℂ
5743, 56mul0ori 11463 . . . . . . . . . . . . . 14 ((2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0 ↔ (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0))
5851, 57mpbi 233 . . . . . . . . . . . . 13 (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0)
5941, 58mtpor 1778 . . . . . . . . . . . 12 ((sin‘(π / 2)) · (cos‘(π / 2))) = 0
6053, 55mul0ori 11463 . . . . . . . . . . . 12 (((sin‘(π / 2)) · (cos‘(π / 2))) = 0 ↔ ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0))
6159, 60mpbi 233 . . . . . . . . . . 11 ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0)
6239, 61mtpor 1778 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6362oveq1i 7212 . . . . . . . . 9 ((cos‘(π / 2))↑2) = (0↑2)
64 sq0 13744 . . . . . . . . 9 (0↑2) = 0
6563, 64eqtri 2762 . . . . . . . 8 ((cos‘(π / 2))↑2) = 0
6665oveq2i 7213 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = (((sin‘(π / 2))↑2) + 0)
67 sincossq 15718 . . . . . . . 8 ((π / 2) ∈ ℂ → (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1)
6846, 67ax-mp 5 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1
6966, 68eqtr3i 2764 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = 1
7053sqcli 13733 . . . . . . 7 ((sin‘(π / 2))↑2) ∈ ℂ
7170addid1i 11002 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = ((sin‘(π / 2))↑2)
7235, 69, 713eqtr2ri 2769 . . . . 5 ((sin‘(π / 2))↑2) = (1↑2)
73 ax-1cn 10770 . . . . . 6 1 ∈ ℂ
7453, 73sqeqori 13765 . . . . 5 (((sin‘(π / 2))↑2) = (1↑2) ↔ ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1))
7572, 74mpbi 233 . . . 4 ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1)
7675ori 861 . . 3 (¬ (sin‘(π / 2)) = 1 → (sin‘(π / 2)) = -1)
7734, 76mt3 204 . 2 (sin‘(π / 2)) = 1
7877, 62pm3.2i 474 1 ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  *cxr 10849   < clt 10850  cle 10851  -cneg 11046   / cdiv 11472  2c2 11868  4c4 11870  (,]cioc 12919  cexp 13618  sincsin 15606  cosccos 15607  πcpi 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-ef 15610  df-sin 15612  df-cos 15613  df-pi 15615  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736
This theorem is referenced by:  sinhalfpi  25330  coshalfpi  25331
  Copyright terms: Public domain W3C validator