MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6784
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 4103 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 5226 . . . . 5 ∅ ∈ V
43snid 4594 . . . 4 ∅ ∈ {∅}
52, 4sselii 3914 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5eqeltrdi 2847 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 4102 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6748 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvexd 6771 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
11 fvbr0 6783 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1211ori 857 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1312con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
14 brelrng 5839 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
159, 10, 13, 14syl3anc 1369 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
167, 15sselid 3915 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
176, 16pm2.61i 182 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {csn 4558   class class class wbr 5070  ran crn 5581  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426
This theorem is referenced by:  fvssunirn  6785  dfac4  9809  dfac2b  9817  dfacacn  9828  axdc2lem  10135  axcclem  10144  seqexw  13665  plusffval  18247  grpsubfval  18538  mulgfval  18617  staffval  20022  scaffval  20056  lpival  20429  ipffval  20765  nmfval  23650  tcphex  24286  tchnmfval  24297  orderseqlem  33728  rrnval  35912  lsatset  36931  fvnonrel  41094
  Copyright terms: Public domain W3C validator