MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6859
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 4128 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 5249 . . . . 5 ∅ ∈ V
43snid 4616 . . . 4 ∅ ∈ {∅}
52, 4sselii 3927 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5eqeltrdi 2841 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 4127 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6823 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvexd 6846 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
11 fvbr0 6858 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1211ori 861 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1312con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
14 brelrng 5887 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
159, 10, 13, 14syl3anc 1373 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
167, 15sselid 3928 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
176, 16pm2.61i 182 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4577   class class class wbr 5095  ran crn 5622  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-cnv 5629  df-dm 5631  df-rn 5632  df-iota 6445  df-fv 6497
This theorem is referenced by:  fvn0fvelrn  6860  orderseqlem  8096  dfac4  10024  dfac2b  10033  dfacacn  10044  axdc2lem  10350  axcclem  10359  seqexw  13931  plusffval  18562  grpsubfval  18904  mulgfval  18990  staffval  20765  scaffval  20822  lpival  21270  ipffval  21594  nmfval  24523  tcphex  25164  tchnmfval  25175  rrnval  37940  lsatset  39162  fvnonrel  43754
  Copyright terms: Public domain W3C validator