| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version | ||
| Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
| 2 | ssun2 4124 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
| 3 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4610 | . . . 4 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3926 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
| 6 | 1, 5 | eqeltrdi 2839 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 7 | ssun1 4123 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
| 8 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | 8 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
| 10 | fvexd 6832 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
| 11 | fvbr0 6844 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
| 12 | 11 | ori 861 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 13 | 12 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 14 | brelrng 5876 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 15 | 9, 10, 13, 14 | syl3anc 1373 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| 16 | 7, 15 | sselid 3927 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 17 | 6, 16 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4278 {csn 4571 class class class wbr 5086 ran crn 5612 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: fvn0fvelrn 6846 orderseqlem 8082 dfac4 10008 dfac2b 10017 dfacacn 10028 axdc2lem 10334 axcclem 10343 seqexw 13919 plusffval 18549 grpsubfval 18891 mulgfval 18977 staffval 20751 scaffval 20808 lpival 21256 ipffval 21580 nmfval 24498 tcphex 25139 tchnmfval 25150 rrnval 37867 lsatset 39029 fvnonrel 43630 |
| Copyright terms: Public domain | W3C validator |