MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6906
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 4154 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 5277 . . . . 5 ∅ ∈ V
43snid 4638 . . . 4 ∅ ∈ {∅}
52, 4sselii 3955 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5eqeltrdi 2842 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 4153 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6868 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvexd 6891 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
11 fvbr0 6905 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1211ori 861 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1312con1i 147 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
14 brelrng 5921 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
159, 10, 13, 14syl3anc 1373 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
167, 15sselid 3956 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
176, 16pm2.61i 182 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  c0 4308  {csn 4601   class class class wbr 5119  ran crn 5655  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-iota 6484  df-fv 6539
This theorem is referenced by:  fvn0fvelrn  6907  fvssunirnOLD  6910  orderseqlem  8156  dfac4  10136  dfac2b  10145  dfacacn  10156  axdc2lem  10462  axcclem  10471  seqexw  14035  plusffval  18624  grpsubfval  18966  mulgfval  19052  staffval  20801  scaffval  20837  lpival  21285  ipffval  21608  nmfval  24527  tcphex  25169  tchnmfval  25180  rrnval  37851  lsatset  39008  fvnonrel  43621
  Copyright terms: Public domain W3C validator