| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version | ||
| Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
| 2 | ssun2 4138 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
| 3 | 0ex 5257 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4622 | . . . 4 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3940 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
| 6 | 1, 5 | eqeltrdi 2836 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 7 | ssun1 4137 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
| 8 | fvprc 6832 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | 8 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
| 10 | fvexd 6855 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
| 11 | fvbr0 6869 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
| 12 | 11 | ori 861 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 13 | 12 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 14 | brelrng 5894 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 15 | 9, 10, 13, 14 | syl3anc 1373 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| 16 | 7, 15 | sselid 3941 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 17 | 6, 16 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ∅c0 4292 {csn 4585 class class class wbr 5102 ran crn 5632 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: fvn0fvelrn 6871 fvssunirnOLD 6874 orderseqlem 8113 dfac4 10051 dfac2b 10060 dfacacn 10071 axdc2lem 10377 axcclem 10386 seqexw 13958 plusffval 18549 grpsubfval 18891 mulgfval 18977 staffval 20726 scaffval 20762 lpival 21210 ipffval 21533 nmfval 24452 tcphex 25093 tchnmfval 25104 rrnval 37794 lsatset 38956 fvnonrel 43559 |
| Copyright terms: Public domain | W3C validator |