![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version |
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
2 | ssun2 4065 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
3 | 0ex 5096 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | snid 4500 | . . . 4 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3881 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
6 | 1, 5 | syl6eqel 2889 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
7 | ssun1 4064 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
8 | fvprc 6523 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
9 | 8 | con1i 149 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
10 | fvexd 6545 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
11 | fvbr0 6557 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
12 | 11 | ori 856 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
13 | 12 | con1i 149 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
14 | brelrng 5685 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
15 | 9, 10, 13, 14 | syl3anc 1362 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
16 | 7, 15 | sseldi 3882 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
17 | 6, 16 | pm2.61i 183 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ∪ cun 3852 ∅c0 4206 {csn 4466 class class class wbr 4956 ran crn 5436 ‘cfv 6217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-cnv 5443 df-dm 5445 df-rn 5446 df-iota 6181 df-fv 6225 |
This theorem is referenced by: fvssunirn 6559 dfac4 9383 dfac2b 9391 dfacacn 9402 axdc2lem 9705 axcclem 9714 seqexw 13223 plusffval 17674 grpsubfval 17892 mulgfval 17971 staffval 19296 scaffval 19330 lpival 19695 ipffval 20462 nmfval 22869 tcphex 23491 tchnmfval 23502 orderseqlem 32648 rrnval 34583 lsatset 35607 fvnonrel 39393 |
Copyright terms: Public domain | W3C validator |