| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version | ||
| Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
| 2 | ssun2 4132 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
| 3 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4616 | . . . 4 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3934 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
| 6 | 1, 5 | eqeltrdi 2836 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 7 | ssun1 4131 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
| 8 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | 8 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
| 10 | fvexd 6841 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
| 11 | fvbr0 6853 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
| 12 | 11 | ori 861 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 13 | 12 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 14 | brelrng 5887 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 15 | 9, 10, 13, 14 | syl3anc 1373 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| 16 | 7, 15 | sselid 3935 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 17 | 6, 16 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ∅c0 4286 {csn 4579 class class class wbr 5095 ran crn 5624 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: fvn0fvelrn 6855 fvssunirnOLD 6858 orderseqlem 8097 dfac4 10035 dfac2b 10044 dfacacn 10055 axdc2lem 10361 axcclem 10370 seqexw 13943 plusffval 18539 grpsubfval 18881 mulgfval 18967 staffval 20745 scaffval 20802 lpival 21250 ipffval 21574 nmfval 24493 tcphex 25134 tchnmfval 25145 rrnval 37826 lsatset 38988 fvnonrel 43590 |
| Copyright terms: Public domain | W3C validator |