![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version |
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
2 | ssun2 4189 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
3 | 0ex 5313 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | snid 4667 | . . . 4 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3992 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
6 | 1, 5 | eqeltrdi 2847 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
7 | ssun1 4188 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
8 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
9 | 8 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
10 | fvexd 6922 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
11 | fvbr0 6936 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
12 | 11 | ori 861 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
13 | 12 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
14 | brelrng 5955 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
15 | 9, 10, 13, 14 | syl3anc 1370 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
16 | 7, 15 | sselid 3993 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
17 | 6, 16 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∅c0 4339 {csn 4631 class class class wbr 5148 ran crn 5690 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fvn0fvelrn 6938 fvssunirnOLD 6941 orderseqlem 8181 dfac4 10160 dfac2b 10169 dfacacn 10180 axdc2lem 10486 axcclem 10495 seqexw 14055 plusffval 18672 grpsubfval 19014 mulgfval 19100 staffval 20859 scaffval 20895 lpival 21352 ipffval 21684 nmfval 24617 tcphex 25265 tchnmfval 25276 rrnval 37814 lsatset 38972 fvnonrel 43587 |
Copyright terms: Public domain | W3C validator |