| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvrn0 | Structured version Visualization version GIF version | ||
| Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fvrn0 | ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) = ∅) | |
| 2 | ssun2 4154 | . . . 4 ⊢ {∅} ⊆ (ran 𝐹 ∪ {∅}) | |
| 3 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4638 | . . . 4 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3955 | . . 3 ⊢ ∅ ∈ (ran 𝐹 ∪ {∅}) |
| 6 | 1, 5 | eqeltrdi 2842 | . 2 ⊢ ((𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 7 | ssun1 4153 | . . 3 ⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {∅}) | |
| 8 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | 8 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ V) |
| 10 | fvexd 6891 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ V) | |
| 11 | fvbr0 6905 | . . . . . 6 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | |
| 12 | 11 | ori 861 | . . . . 5 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 13 | 12 | con1i 147 | . . . 4 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 14 | brelrng 5921 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V ∧ 𝑋𝐹(𝐹‘𝑋)) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 15 | 9, 10, 13, 14 | syl3anc 1373 | . . 3 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| 16 | 7, 15 | sselid 3956 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅})) |
| 17 | 6, 16 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ∅c0 4308 {csn 4601 class class class wbr 5119 ran crn 5655 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: fvn0fvelrn 6907 fvssunirnOLD 6910 orderseqlem 8156 dfac4 10136 dfac2b 10145 dfacacn 10156 axdc2lem 10462 axcclem 10471 seqexw 14035 plusffval 18624 grpsubfval 18966 mulgfval 19052 staffval 20801 scaffval 20837 lpival 21285 ipffval 21608 nmfval 24527 tcphex 25169 tchnmfval 25180 rrnval 37851 lsatset 39008 fvnonrel 43621 |
| Copyright terms: Public domain | W3C validator |