MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpsuc Structured version   Visualization version   GIF version

Theorem rankxpsuc 9818
Description: The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 9815 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpsuc (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = suc suc (rank‘(𝐴𝐵)))

Proof of Theorem rankxpsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unixp 6234 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
21fveq2d 6846 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
3 rankuni 9799 . . . . . . . 8 (rank‘ (𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
4 rankuni 9799 . . . . . . . . 9 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
54unieqi 4878 . . . . . . . 8 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
63, 5eqtri 2764 . . . . . . 7 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
72, 6eqtr3di 2791 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
8 suc11reg 9555 . . . . . 6 (suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)) ↔ (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
97, 8sylibr 233 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
109adantl 482 . . . 4 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
11 fvex 6855 . . . . . . . . . . . . . 14 (rank‘(𝐴𝐵)) ∈ V
12 eleq1 2825 . . . . . . . . . . . . . 14 ((rank‘(𝐴𝐵)) = suc 𝐶 → ((rank‘(𝐴𝐵)) ∈ V ↔ suc 𝐶 ∈ V))
1311, 12mpbii 232 . . . . . . . . . . . . 13 ((rank‘(𝐴𝐵)) = suc 𝐶 → suc 𝐶 ∈ V)
14 sucexb 7739 . . . . . . . . . . . . 13 (𝐶 ∈ V ↔ suc 𝐶 ∈ V)
1513, 14sylibr 233 . . . . . . . . . . . 12 ((rank‘(𝐴𝐵)) = suc 𝐶𝐶 ∈ V)
16 nlimsucg 7778 . . . . . . . . . . . 12 (𝐶 ∈ V → ¬ Lim suc 𝐶)
1715, 16syl 17 . . . . . . . . . . 11 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim suc 𝐶)
18 limeq 6329 . . . . . . . . . . 11 ((rank‘(𝐴𝐵)) = suc 𝐶 → (Lim (rank‘(𝐴𝐵)) ↔ Lim suc 𝐶))
1917, 18mtbird 324 . . . . . . . . . 10 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴𝐵)))
20 rankxplim.1 . . . . . . . . . . 11 𝐴 ∈ V
21 rankxplim.2 . . . . . . . . . . 11 𝐵 ∈ V
2220, 21rankxplim2 9816 . . . . . . . . . 10 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))
2319, 22nsyl 140 . . . . . . . . 9 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴 × 𝐵)))
2420, 21xpex 7687 . . . . . . . . . . . . . 14 (𝐴 × 𝐵) ∈ V
2524rankeq0 9797 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
2625necon3abii 2990 . . . . . . . . . . . 12 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
27 rankon 9731 . . . . . . . . . . . . . . . 16 (rank‘(𝐴 × 𝐵)) ∈ On
2827onordi 6428 . . . . . . . . . . . . . . 15 Ord (rank‘(𝐴 × 𝐵))
29 ordzsl 7781 . . . . . . . . . . . . . . 15 (Ord (rank‘(𝐴 × 𝐵)) ↔ ((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3028, 29mpbi 229 . . . . . . . . . . . . . 14 ((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))
31 3orass 1090 . . . . . . . . . . . . . 14 (((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))) ↔ ((rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))))
3230, 31mpbi 229 . . . . . . . . . . . . 13 ((rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3332ori 859 . . . . . . . . . . . 12 (¬ (rank‘(𝐴 × 𝐵)) = ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3426, 33sylbi 216 . . . . . . . . . . 11 ((𝐴 × 𝐵) ≠ ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3534ord 862 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ → (¬ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → Lim (rank‘(𝐴 × 𝐵))))
3635con1d 145 . . . . . . . . 9 ((𝐴 × 𝐵) ≠ ∅ → (¬ Lim (rank‘(𝐴 × 𝐵)) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
3723, 36syl5com 31 . . . . . . . 8 ((rank‘(𝐴𝐵)) = suc 𝐶 → ((𝐴 × 𝐵) ≠ ∅ → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
38 nlimsucg 7778 . . . . . . . . . . . 12 (𝑥 ∈ V → ¬ Lim suc 𝑥)
3938elv 3451 . . . . . . . . . . 11 ¬ Lim suc 𝑥
40 limeq 6329 . . . . . . . . . . 11 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim suc 𝑥))
4139, 40mtbiri 326 . . . . . . . . . 10 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4241rexlimivw 3148 . . . . . . . . 9 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4320, 21rankxplim3 9817 . . . . . . . . 9 (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 × 𝐵)))
4442, 43sylnib 327 . . . . . . . 8 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4537, 44syl6com 37 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴 × 𝐵))))
46 unixp0 6235 . . . . . . . . . . . 12 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
4724uniex 7678 . . . . . . . . . . . . 13 (𝐴 × 𝐵) ∈ V
4847rankeq0 9797 . . . . . . . . . . . 12 ( (𝐴 × 𝐵) = ∅ ↔ (rank‘ (𝐴 × 𝐵)) = ∅)
494eqeq1i 2741 . . . . . . . . . . . 12 ((rank‘ (𝐴 × 𝐵)) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
5046, 48, 493bitri 296 . . . . . . . . . . 11 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
5150necon3abii 2990 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
52 onuni 7723 . . . . . . . . . . . . . . 15 ((rank‘(𝐴 × 𝐵)) ∈ On → (rank‘(𝐴 × 𝐵)) ∈ On)
5327, 52ax-mp 5 . . . . . . . . . . . . . 14 (rank‘(𝐴 × 𝐵)) ∈ On
5453onordi 6428 . . . . . . . . . . . . 13 Ord (rank‘(𝐴 × 𝐵))
55 ordzsl 7781 . . . . . . . . . . . . 13 (Ord (rank‘(𝐴 × 𝐵)) ↔ ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
5654, 55mpbi 229 . . . . . . . . . . . 12 ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))
57 3orass 1090 . . . . . . . . . . . 12 (( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))) ↔ ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))))
5856, 57mpbi 229 . . . . . . . . . . 11 ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
5958ori 859 . . . . . . . . . 10 (rank‘(𝐴 × 𝐵)) = ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
6051, 59sylbi 216 . . . . . . . . 9 ((𝐴 × 𝐵) ≠ ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
6160ord 862 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → (¬ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → Lim (rank‘(𝐴 × 𝐵))))
6261con1d 145 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → (¬ Lim (rank‘(𝐴 × 𝐵)) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
6345, 62syld 47 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → ((rank‘(𝐴𝐵)) = suc 𝐶 → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
6463impcom 408 . . . . 5 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥)
65 onsucuni2 7769 . . . . . . 7 (( (rank‘(𝐴 × 𝐵)) ∈ On ∧ (rank‘(𝐴 × 𝐵)) = suc 𝑥) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6653, 65mpan 688 . . . . . 6 ( (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6766rexlimivw 3148 . . . . 5 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6864, 67syl 17 . . . 4 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6910, 68eqtrd 2776 . . 3 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
70 suc11reg 9555 . . 3 (suc suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)) ↔ suc (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
7169, 70sylibr 233 . 2 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
7237imp 407 . . 3 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥)
73 onsucuni2 7769 . . . . 5 (((rank‘(𝐴 × 𝐵)) ∈ On ∧ (rank‘(𝐴 × 𝐵)) = suc 𝑥) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7427, 73mpan 688 . . . 4 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7574rexlimivw 3148 . . 3 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7672, 75syl 17 . 2 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7771, 76eqtr2d 2777 1 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = suc suc (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cun 3908  c0 4282   cuni 4865   × cxp 5631  Ord word 6316  Oncon0 6317  Lim wlim 6318  suc csuc 6319  cfv 6496  rankcrnk 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-r1 9700  df-rank 9701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator