| Step | Hyp | Ref
| Expression |
| 1 | | alephordilem1 10113 |
. . . 4
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝐴)) |
| 2 | | alephon 10109 |
. . . . . . . . 9
⊢
(ℵ‘suc 𝐴) ∈ On |
| 3 | | cff1 10298 |
. . . . . . . . 9
⊢
((ℵ‘suc 𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦))) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢
∃𝑓(𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) |
| 5 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢
(cf‘(ℵ‘suc 𝐴)) ∈ V |
| 6 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑦) ∈ V |
| 7 | 6 | sucex 7826 |
. . . . . . . . . . . . 13
⊢ suc
(𝑓‘𝑦) ∈ V |
| 8 | 5, 7 | iunex 7993 |
. . . . . . . . . . . 12
⊢ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ∈ V |
| 9 | | f1f 6804 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc
𝐴)) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc
𝐴)) |
| 11 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) |
| 12 | 2 | oneli 6498 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (ℵ‘suc 𝐴) → 𝑥 ∈ On) |
| 13 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴)) |
| 14 | | onelon 6409 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((ℵ‘suc 𝐴) ∈ On ∧ (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴)) → (𝑓‘𝑦) ∈ On) |
| 15 | 2, 13, 14 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓‘𝑦) ∈ On) |
| 16 | | onsssuc 6474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ On ∧ (𝑓‘𝑦) ∈ On) → (𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ suc (𝑓‘𝑦))) |
| 17 | 15, 16 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ On ∧ (𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴)))) → (𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ suc (𝑓‘𝑦))) |
| 18 | 17 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ suc (𝑓‘𝑦))) |
| 19 | 18 | rexbidva 3177 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈
(cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓‘𝑦))) |
| 20 | | eliun 4995 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓‘𝑦)) |
| 21 | 19, 20 | bitr4di 289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈
(cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 22 | 21 | ancoms 458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 23 | 12, 22 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ (ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ 𝑥 ∈ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 24 | 23 | ralbidva 3176 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 ∈ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 25 | | dfss3 3972 |
. . . . . . . . . . . . . . 15
⊢
((ℵ‘suc 𝐴) ⊆ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 ∈ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦)) |
| 26 | 24, 25 | bitr4di 289 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦) ↔ (ℵ‘suc 𝐴) ⊆ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 27 | 26 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) → (ℵ‘suc 𝐴) ⊆ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦)) |
| 28 | 10, 11, 27 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc
𝐴) ⊆ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦)) |
| 29 | | ssdomg 9040 |
. . . . . . . . . . . 12
⊢ (∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ∈ V → ((ℵ‘suc 𝐴) ⊆ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) → (ℵ‘suc 𝐴) ≼ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦))) |
| 30 | 8, 28, 29 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc
𝐴) ≼ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦)) |
| 31 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝐴 ∈ On) |
| 32 | | onsuc 7831 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| 33 | | alephislim 10123 |
. . . . . . . . . . . . . . . . . . 19
⊢ (suc
𝐴 ∈ On ↔ Lim
(ℵ‘suc 𝐴)) |
| 34 | | limsuc 7870 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Lim
(ℵ‘suc 𝐴)
→ ((𝑓‘𝑦) ∈ (ℵ‘suc
𝐴) ↔ suc (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴))) |
| 35 | 33, 34 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝐴 ∈ On → ((𝑓‘𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴))) |
| 36 | 32, 35 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → ((𝑓‘𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴))) |
| 37 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = suc (𝑓‘𝑦) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ suc (𝑓‘𝑦) ≺ (ℵ‘suc 𝐴))) |
| 38 | | alephcard 10110 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) |
| 39 | | iscard 10015 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴))) |
| 40 | 39 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) → ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)) |
| 41 | 38, 40 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
∀𝑧 ∈
(ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc
𝐴) |
| 42 | 37, 41 | vtoclri 3590 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
(𝑓‘𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓‘𝑦) ≺ (ℵ‘suc 𝐴)) |
| 43 | | alephsucdom 10119 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → (suc (𝑓‘𝑦) ≼ (ℵ‘𝐴) ↔ suc (𝑓‘𝑦) ≺ (ℵ‘suc 𝐴))) |
| 44 | 42, 43 | imbitrrid 246 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → (suc (𝑓‘𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓‘𝑦) ≼ (ℵ‘𝐴))) |
| 45 | 36, 44 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → ((𝑓‘𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓‘𝑦) ≼ (ℵ‘𝐴))) |
| 46 | 13, 45 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → ((𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → suc (𝑓‘𝑦) ≼ (ℵ‘𝐴))) |
| 47 | 46 | expdimp 452 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) → (𝑦 ∈ (cf‘(ℵ‘suc 𝐴)) → suc (𝑓‘𝑦) ≼ (ℵ‘𝐴))) |
| 48 | 47 | ralrimiv 3145 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) → ∀𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ (ℵ‘𝐴)) |
| 49 | | iundom 10582 |
. . . . . . . . . . . . 13
⊢
(((cf‘(ℵ‘suc 𝐴)) ∈ V ∧ ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ (ℵ‘𝐴)) → ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 50 | 5, 48, 49 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc
𝐴))⟶(ℵ‘suc 𝐴)) → ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 51 | 31, 10, 50 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 52 | | domtr 9047 |
. . . . . . . . . . 11
⊢
(((ℵ‘suc 𝐴) ≼ ∪ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ∧ ∪
𝑦 ∈
(cf‘(ℵ‘suc 𝐴))suc (𝑓‘𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) → (ℵ‘suc
𝐴) ≼
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 53 | 30, 51, 52 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑓:(cf‘(ℵ‘suc
𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) ∧ (𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc
𝐴) ≼
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 54 | 53 | expcom 413 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) → (ℵ‘suc 𝐴) ≼
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))) |
| 55 | 54 | exlimdv 1933 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓‘𝑦)) → (ℵ‘suc 𝐴) ≼
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))) |
| 56 | 4, 55 | mpi 20 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc
𝐴) ≼
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) |
| 57 | | alephgeom 10122 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
| 58 | | alephon 10109 |
. . . . . . . . . . 11
⊢
(ℵ‘𝐴)
∈ On |
| 59 | | infxpen 10054 |
. . . . . . . . . . 11
⊢
(((ℵ‘𝐴)
∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) |
| 60 | 58, 59 | mpan 690 |
. . . . . . . . . 10
⊢ (ω
⊆ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
× (ℵ‘𝐴))
≈ (ℵ‘𝐴)) |
| 61 | 57, 60 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
((ℵ‘𝐴) ×
(ℵ‘𝐴)) ≈
(ℵ‘𝐴)) |
| 62 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑧 = (cf‘(ℵ‘suc
𝐴)) → (𝑧 ≺ (ℵ‘suc
𝐴) ↔
(cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴))) |
| 63 | 62, 41 | vtoclri 3590 |
. . . . . . . . . . 11
⊢
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) →
(cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)) |
| 64 | | alephsucdom 10119 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc
𝐴))) |
| 65 | 63, 64 | imbitrrid 246 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) →
(cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴))) |
| 66 | | fvex 6919 |
. . . . . . . . . . 11
⊢
(ℵ‘𝐴)
∈ V |
| 67 | 66 | xpdom1 9111 |
. . . . . . . . . 10
⊢
((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴))) |
| 68 | 65, 67 | syl6 35 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) →
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))) |
| 69 | | domentr 9053 |
. . . . . . . . . 10
⊢
((((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((cf‘(ℵ‘suc
𝐴)) ×
(ℵ‘𝐴)) ≼
(ℵ‘𝐴)) |
| 70 | 69 | expcom 413 |
. . . . . . . . 9
⊢
(((ℵ‘𝐴)
× (ℵ‘𝐴))
≈ (ℵ‘𝐴)
→ (((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) → ((cf‘(ℵ‘suc
𝐴)) ×
(ℵ‘𝐴)) ≼
(ℵ‘𝐴))) |
| 71 | 61, 68, 70 | sylsyld 61 |
. . . . . . . 8
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) →
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))) |
| 72 | 71 | imp 406 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) →
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)) |
| 73 | | domtr 9047 |
. . . . . . 7
⊢
(((ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc
𝐴)) ×
(ℵ‘𝐴)) ∧
((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴)) |
| 74 | 56, 72, 73 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc
𝐴) ≼
(ℵ‘𝐴)) |
| 75 | | domnsym 9139 |
. . . . . 6
⊢
((ℵ‘suc 𝐴) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc
𝐴)) |
| 76 | 74, 75 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ On ∧
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ¬
(ℵ‘𝐴) ≺
(ℵ‘suc 𝐴)) |
| 77 | 76 | ex 412 |
. . . 4
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ¬
(ℵ‘𝐴) ≺
(ℵ‘suc 𝐴))) |
| 78 | 1, 77 | mt2d 136 |
. . 3
⊢ (𝐴 ∈ On → ¬
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) |
| 79 | | cfon 10295 |
. . . . 5
⊢
(cf‘(ℵ‘suc 𝐴)) ∈ On |
| 80 | | cfle 10294 |
. . . . . 6
⊢
(cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴) |
| 81 | | onsseleq 6425 |
. . . . . 6
⊢
(((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) →
((cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴) ↔
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)))) |
| 82 | 80, 81 | mpbii 233 |
. . . . 5
⊢
(((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) →
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))) |
| 83 | 79, 2, 82 | mp2an 692 |
. . . 4
⊢
((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)) |
| 84 | 83 | ori 862 |
. . 3
⊢ (¬
(cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) →
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)) |
| 85 | 78, 84 | syl 17 |
. 2
⊢ (𝐴 ∈ On →
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)) |
| 86 | | cf0 10291 |
. . 3
⊢
(cf‘∅) = ∅ |
| 87 | | alephfnon 10105 |
. . . . . . . 8
⊢ ℵ
Fn On |
| 88 | 87 | fndmi 6672 |
. . . . . . 7
⊢ dom
ℵ = On |
| 89 | 88 | eleq2i 2833 |
. . . . . 6
⊢ (suc
𝐴 ∈ dom ℵ ↔
suc 𝐴 ∈
On) |
| 90 | | onsucb 7837 |
. . . . . 6
⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| 91 | 89, 90 | bitr4i 278 |
. . . . 5
⊢ (suc
𝐴 ∈ dom ℵ ↔
𝐴 ∈
On) |
| 92 | | ndmfv 6941 |
. . . . 5
⊢ (¬
suc 𝐴 ∈ dom ℵ
→ (ℵ‘suc 𝐴) = ∅) |
| 93 | 91, 92 | sylnbir 331 |
. . . 4
⊢ (¬
𝐴 ∈ On →
(ℵ‘suc 𝐴) =
∅) |
| 94 | 93 | fveq2d 6910 |
. . 3
⊢ (¬
𝐴 ∈ On →
(cf‘(ℵ‘suc 𝐴)) = (cf‘∅)) |
| 95 | 86, 94, 93 | 3eqtr4a 2803 |
. 2
⊢ (¬
𝐴 ∈ On →
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)) |
| 96 | 85, 95 | pm2.61i 182 |
1
⊢
(cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) |