MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephreg Structured version   Visualization version   GIF version

Theorem alephreg 10651
Description: A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephreg (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)

Proof of Theorem alephreg
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephordilem1 10142 . . . 4 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
2 alephon 10138 . . . . . . . . 9 (ℵ‘suc 𝐴) ∈ On
3 cff1 10327 . . . . . . . . 9 ((ℵ‘suc 𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)))
42, 3ax-mp 5 . . . . . . . 8 𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
5 fvex 6933 . . . . . . . . . . . . 13 (cf‘(ℵ‘suc 𝐴)) ∈ V
6 fvex 6933 . . . . . . . . . . . . . 14 (𝑓𝑦) ∈ V
76sucex 7842 . . . . . . . . . . . . 13 suc (𝑓𝑦) ∈ V
85, 7iunex 8009 . . . . . . . . . . . 12 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V
9 f1f 6817 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
109ad2antrr 725 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
11 simplr 768 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
122oneli 6509 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℵ‘suc 𝐴) → 𝑥 ∈ On)
13 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ (ℵ‘suc 𝐴))
14 onelon 6420 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℵ‘suc 𝐴) ∈ On ∧ (𝑓𝑦) ∈ (ℵ‘suc 𝐴)) → (𝑓𝑦) ∈ On)
152, 13, 14sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ On)
16 onsssuc 6485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ (𝑓𝑦) ∈ On) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1715, 16sylan2 592 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴)))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1817anassrs 467 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1918rexbidva 3183 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦)))
20 eliun 5019 . . . . . . . . . . . . . . . . . . 19 (𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦))
2119, 20bitr4di 289 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2221ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2312, 22sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ (ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2423ralbidva 3182 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
25 dfss3 3997 . . . . . . . . . . . . . . 15 ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2624, 25bitr4di 289 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2726biimpa 476 . . . . . . . . . . . . 13 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2810, 11, 27syl2anc 583 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
29 ssdomg 9060 . . . . . . . . . . . 12 ( 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V → ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
308, 28, 29mpsyl 68 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
31 simprl 770 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝐴 ∈ On)
32 onsuc 7847 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → suc 𝐴 ∈ On)
33 alephislim 10152 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On ↔ Lim (ℵ‘suc 𝐴))
34 limsuc 7886 . . . . . . . . . . . . . . . . . . 19 (Lim (ℵ‘suc 𝐴) → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3533, 34sylbi 217 . . . . . . . . . . . . . . . . . 18 (suc 𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3632, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
37 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc (𝑓𝑦) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
38 alephcard 10139 . . . . . . . . . . . . . . . . . . . 20 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
39 iscard 10044 . . . . . . . . . . . . . . . . . . . . 21 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)))
4039simprbi 496 . . . . . . . . . . . . . . . . . . . 20 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) → ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴))
4138, 40ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)
4237, 41vtoclri 3603 . . . . . . . . . . . . . . . . . 18 (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴))
43 alephsucdom 10148 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → (suc (𝑓𝑦) ≼ (ℵ‘𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
4442, 43imbitrrid 246 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4536, 44sylbid 240 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4613, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4746expdimp 452 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (𝑦 ∈ (cf‘(ℵ‘suc 𝐴)) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4847ralrimiv 3151 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴))
49 iundom 10611 . . . . . . . . . . . . 13 (((cf‘(ℵ‘suc 𝐴)) ∈ V ∧ ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
505, 48, 49sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5131, 10, 50syl2anc 583 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
52 domtr 9067 . . . . . . . . . . 11 (((ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5330, 51, 52syl2anc 583 . . . . . . . . . 10 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5453expcom 413 . . . . . . . . 9 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
5554exlimdv 1932 . . . . . . . 8 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
564, 55mpi 20 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
57 alephgeom 10151 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
58 alephon 10138 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ On
59 infxpen 10083 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6058, 59mpan 689 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6157, 60sylbi 217 . . . . . . . . 9 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
62 breq1 5169 . . . . . . . . . . . 12 (𝑧 = (cf‘(ℵ‘suc 𝐴)) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6362, 41vtoclri 3603 . . . . . . . . . . 11 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴))
64 alephsucdom 10148 . . . . . . . . . . 11 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6563, 64imbitrrid 246 . . . . . . . . . 10 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴)))
66 fvex 6933 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ V
6766xpdom1 9137 . . . . . . . . . 10 ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6865, 67syl6 35 . . . . . . . . 9 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴))))
69 domentr 9073 . . . . . . . . . 10 ((((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
7069expcom 413 . . . . . . . . 9 (((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴) → (((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7161, 68, 70sylsyld 61 . . . . . . . 8 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7271imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
73 domtr 9067 . . . . . . 7 (((ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ∧ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
7456, 72, 73syl2anc 583 . . . . . 6 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
75 domnsym 9165 . . . . . 6 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7776ex 412 . . . 4 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
781, 77mt2d 136 . . 3 (𝐴 ∈ On → ¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))
79 cfon 10324 . . . . 5 (cf‘(ℵ‘suc 𝐴)) ∈ On
80 cfle 10323 . . . . . 6 (cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴)
81 onsseleq 6436 . . . . . 6 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴) ↔ ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))))
8280, 81mpbii 233 . . . . 5 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)))
8379, 2, 82mp2an 691 . . . 4 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8483ori 860 . . 3 (¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8578, 84syl 17 . 2 (𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
86 cf0 10320 . . 3 (cf‘∅) = ∅
87 alephfnon 10134 . . . . . . . 8 ℵ Fn On
8887fndmi 6683 . . . . . . 7 dom ℵ = On
8988eleq2i 2836 . . . . . 6 (suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On)
90 onsucb 7853 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
9189, 90bitr4i 278 . . . . 5 (suc 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
92 ndmfv 6955 . . . . 5 (¬ suc 𝐴 ∈ dom ℵ → (ℵ‘suc 𝐴) = ∅)
9391, 92sylnbir 331 . . . 4 𝐴 ∈ On → (ℵ‘suc 𝐴) = ∅)
9493fveq2d 6924 . . 3 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (cf‘∅))
9586, 94, 933eqtr4a 2806 . 2 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
9685, 95pm2.61i 182 1 (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352   ciun 5015   class class class wbr 5166   × cxp 5698  dom cdm 5700  Oncon0 6395  Lim wlim 6396  suc csuc 6397  wf 6569  1-1wf1 6570  cfv 6573  ωcom 7903  cen 9000  cdom 9001  csdm 9002  cardccrd 10004  cale 10005  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185
This theorem is referenced by:  pwcfsdom  10652  minregex  43496
  Copyright terms: Public domain W3C validator