MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephreg Structured version   Visualization version   GIF version

Theorem alephreg 10339
Description: A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephreg (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)

Proof of Theorem alephreg
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephordilem1 9830 . . . 4 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
2 alephon 9826 . . . . . . . . 9 (ℵ‘suc 𝐴) ∈ On
3 cff1 10015 . . . . . . . . 9 ((ℵ‘suc 𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)))
42, 3ax-mp 5 . . . . . . . 8 𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
5 fvex 6784 . . . . . . . . . . . . 13 (cf‘(ℵ‘suc 𝐴)) ∈ V
6 fvex 6784 . . . . . . . . . . . . . 14 (𝑓𝑦) ∈ V
76sucex 7650 . . . . . . . . . . . . 13 suc (𝑓𝑦) ∈ V
85, 7iunex 7804 . . . . . . . . . . . 12 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V
9 f1f 6668 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
109ad2antrr 723 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
11 simplr 766 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
122oneli 6373 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℵ‘suc 𝐴) → 𝑥 ∈ On)
13 ffvelrn 6956 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ (ℵ‘suc 𝐴))
14 onelon 6290 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℵ‘suc 𝐴) ∈ On ∧ (𝑓𝑦) ∈ (ℵ‘suc 𝐴)) → (𝑓𝑦) ∈ On)
152, 13, 14sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ On)
16 onsssuc 6352 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ (𝑓𝑦) ∈ On) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1715, 16sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴)))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1817anassrs 468 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1918rexbidva 3227 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦)))
20 eliun 4934 . . . . . . . . . . . . . . . . . . 19 (𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦))
2119, 20bitr4di 289 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2221ancoms 459 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2312, 22sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ (ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2423ralbidva 3122 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
25 dfss3 3914 . . . . . . . . . . . . . . 15 ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2624, 25bitr4di 289 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2726biimpa 477 . . . . . . . . . . . . 13 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2810, 11, 27syl2anc 584 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
29 ssdomg 8769 . . . . . . . . . . . 12 ( 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V → ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
308, 28, 29mpsyl 68 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
31 simprl 768 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝐴 ∈ On)
32 suceloni 7653 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → suc 𝐴 ∈ On)
33 alephislim 9840 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On ↔ Lim (ℵ‘suc 𝐴))
34 limsuc 7690 . . . . . . . . . . . . . . . . . . 19 (Lim (ℵ‘suc 𝐴) → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3533, 34sylbi 216 . . . . . . . . . . . . . . . . . 18 (suc 𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3632, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
37 breq1 5082 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc (𝑓𝑦) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
38 alephcard 9827 . . . . . . . . . . . . . . . . . . . 20 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
39 iscard 9734 . . . . . . . . . . . . . . . . . . . . 21 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)))
4039simprbi 497 . . . . . . . . . . . . . . . . . . . 20 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) → ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴))
4138, 40ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)
4237, 41vtoclri 3524 . . . . . . . . . . . . . . . . . 18 (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴))
43 alephsucdom 9836 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → (suc (𝑓𝑦) ≼ (ℵ‘𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
4442, 43syl5ibr 245 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4536, 44sylbid 239 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4613, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4746expdimp 453 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (𝑦 ∈ (cf‘(ℵ‘suc 𝐴)) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4847ralrimiv 3109 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴))
49 iundom 10299 . . . . . . . . . . . . 13 (((cf‘(ℵ‘suc 𝐴)) ∈ V ∧ ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
505, 48, 49sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5131, 10, 50syl2anc 584 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
52 domtr 8776 . . . . . . . . . . 11 (((ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5330, 51, 52syl2anc 584 . . . . . . . . . 10 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5453expcom 414 . . . . . . . . 9 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
5554exlimdv 1940 . . . . . . . 8 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
564, 55mpi 20 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
57 alephgeom 9839 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
58 alephon 9826 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ On
59 infxpen 9771 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6058, 59mpan 687 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6157, 60sylbi 216 . . . . . . . . 9 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
62 breq1 5082 . . . . . . . . . . . 12 (𝑧 = (cf‘(ℵ‘suc 𝐴)) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6362, 41vtoclri 3524 . . . . . . . . . . 11 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴))
64 alephsucdom 9836 . . . . . . . . . . 11 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6563, 64syl5ibr 245 . . . . . . . . . 10 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴)))
66 fvex 6784 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ V
6766xpdom1 8840 . . . . . . . . . 10 ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6865, 67syl6 35 . . . . . . . . 9 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴))))
69 domentr 8782 . . . . . . . . . 10 ((((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
7069expcom 414 . . . . . . . . 9 (((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴) → (((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7161, 68, 70sylsyld 61 . . . . . . . 8 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7271imp 407 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
73 domtr 8776 . . . . . . 7 (((ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ∧ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
7456, 72, 73syl2anc 584 . . . . . 6 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
75 domnsym 8868 . . . . . 6 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7776ex 413 . . . 4 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
781, 77mt2d 136 . . 3 (𝐴 ∈ On → ¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))
79 cfon 10012 . . . . 5 (cf‘(ℵ‘suc 𝐴)) ∈ On
80 cfle 10011 . . . . . 6 (cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴)
81 onsseleq 6306 . . . . . 6 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴) ↔ ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))))
8280, 81mpbii 232 . . . . 5 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)))
8379, 2, 82mp2an 689 . . . 4 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8483ori 858 . . 3 (¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8578, 84syl 17 . 2 (𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
86 cf0 10008 . . 3 (cf‘∅) = ∅
87 alephfnon 9822 . . . . . . . 8 ℵ Fn On
8887fndmi 6535 . . . . . . 7 dom ℵ = On
8988eleq2i 2832 . . . . . 6 (suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On)
90 sucelon 7658 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
9189, 90bitr4i 277 . . . . 5 (suc 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
92 ndmfv 6801 . . . . 5 (¬ suc 𝐴 ∈ dom ℵ → (ℵ‘suc 𝐴) = ∅)
9391, 92sylnbir 331 . . . 4 𝐴 ∈ On → (ℵ‘suc 𝐴) = ∅)
9493fveq2d 6775 . . 3 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (cf‘∅))
9586, 94, 933eqtr4a 2806 . 2 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
9685, 95pm2.61i 182 1 (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844   = wceq 1542  wex 1786  wcel 2110  wral 3066  wrex 3067  Vcvv 3431  wss 3892  c0 4262   ciun 4930   class class class wbr 5079   × cxp 5588  dom cdm 5590  Oncon0 6265  Lim wlim 6266  suc csuc 6267  wf 6428  1-1wf1 6429  cfv 6432  ωcom 7706  cen 8713  cdom 8714  csdm 8715  cardccrd 9694  cale 9695  cfccf 9696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-ac2 10220
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-oi 9247  df-har 9294  df-card 9698  df-aleph 9699  df-cf 9700  df-acn 9701  df-ac 9873
This theorem is referenced by:  pwcfsdom  10340
  Copyright terms: Public domain W3C validator