MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephreg Structured version   Visualization version   GIF version

Theorem alephreg 10465
Description: A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephreg (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)

Proof of Theorem alephreg
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephordilem1 9956 . . . 4 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
2 alephon 9952 . . . . . . . . 9 (ℵ‘suc 𝐴) ∈ On
3 cff1 10141 . . . . . . . . 9 ((ℵ‘suc 𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)))
42, 3ax-mp 5 . . . . . . . 8 𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
5 fvex 6830 . . . . . . . . . . . . 13 (cf‘(ℵ‘suc 𝐴)) ∈ V
6 fvex 6830 . . . . . . . . . . . . . 14 (𝑓𝑦) ∈ V
76sucex 7734 . . . . . . . . . . . . 13 suc (𝑓𝑦) ∈ V
85, 7iunex 7895 . . . . . . . . . . . 12 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V
9 f1f 6715 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
109ad2antrr 726 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴))
11 simplr 768 . . . . . . . . . . . . 13 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦))
122oneli 6417 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℵ‘suc 𝐴) → 𝑥 ∈ On)
13 ffvelcdm 7009 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ (ℵ‘suc 𝐴))
14 onelon 6327 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℵ‘suc 𝐴) ∈ On ∧ (𝑓𝑦) ∈ (ℵ‘suc 𝐴)) → (𝑓𝑦) ∈ On)
152, 13, 14sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑓𝑦) ∈ On)
16 onsssuc 6394 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ (𝑓𝑦) ∈ On) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1715, 16sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴)))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1817anassrs 467 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ∈ suc (𝑓𝑦)))
1918rexbidva 3152 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦)))
20 eliun 4943 . . . . . . . . . . . . . . . . . . 19 (𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ∈ suc (𝑓𝑦))
2119, 20bitr4di 289 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2221ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2312, 22sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑥 ∈ (ℵ‘suc 𝐴)) → (∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2423ralbidva 3151 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
25 dfss3 3921 . . . . . . . . . . . . . . 15 ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘suc 𝐴)𝑥 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2624, 25bitr4di 289 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) → (∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦) ↔ (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
2726biimpa 476 . . . . . . . . . . . . 13 ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
2810, 11, 27syl2anc 584 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
29 ssdomg 8917 . . . . . . . . . . . 12 ( 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∈ V → ((ℵ‘suc 𝐴) ⊆ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦)))
308, 28, 29mpsyl 68 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦))
31 simprl 770 . . . . . . . . . . . 12 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝐴 ∈ On)
32 onsuc 7738 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → suc 𝐴 ∈ On)
33 alephislim 9966 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On ↔ Lim (ℵ‘suc 𝐴))
34 limsuc 7774 . . . . . . . . . . . . . . . . . . 19 (Lim (ℵ‘suc 𝐴) → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3533, 34sylbi 217 . . . . . . . . . . . . . . . . . 18 (suc 𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
3632, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴)))
37 breq1 5092 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc (𝑓𝑦) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
38 alephcard 9953 . . . . . . . . . . . . . . . . . . . 20 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
39 iscard 9860 . . . . . . . . . . . . . . . . . . . . 21 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)))
4039simprbi 496 . . . . . . . . . . . . . . . . . . . 20 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) → ∀𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴))
4138, 40ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (ℵ‘suc 𝐴)𝑧 ≺ (ℵ‘suc 𝐴)
4237, 41vtoclri 3543 . . . . . . . . . . . . . . . . . 18 (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴))
43 alephsucdom 9962 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → (suc (𝑓𝑦) ≼ (ℵ‘𝐴) ↔ suc (𝑓𝑦) ≺ (ℵ‘suc 𝐴)))
4442, 43imbitrrid 246 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (suc (𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4536, 44sylbid 240 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → ((𝑓𝑦) ∈ (ℵ‘suc 𝐴) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4613, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4746expdimp 452 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → (𝑦 ∈ (cf‘(ℵ‘suc 𝐴)) → suc (𝑓𝑦) ≼ (ℵ‘𝐴)))
4847ralrimiv 3121 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴))
49 iundom 10425 . . . . . . . . . . . . 13 (((cf‘(ℵ‘suc 𝐴)) ∈ V ∧ ∀𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ (ℵ‘𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
505, 48, 49sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑓:(cf‘(ℵ‘suc 𝐴))⟶(ℵ‘suc 𝐴)) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5131, 10, 50syl2anc 584 . . . . . . . . . . 11 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
52 domtr 8924 . . . . . . . . . . 11 (((ℵ‘suc 𝐴) ≼ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ∧ 𝑦 ∈ (cf‘(ℵ‘suc 𝐴))suc (𝑓𝑦) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5330, 51, 52syl2anc 584 . . . . . . . . . 10 (((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) ∧ (𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
5453expcom 413 . . . . . . . . 9 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
5554exlimdv 1934 . . . . . . . 8 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (∃𝑓(𝑓:(cf‘(ℵ‘suc 𝐴))–1-1→(ℵ‘suc 𝐴) ∧ ∀𝑥 ∈ (ℵ‘suc 𝐴)∃𝑦 ∈ (cf‘(ℵ‘suc 𝐴))𝑥 ⊆ (𝑓𝑦)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴))))
564, 55mpi 20 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)))
57 alephgeom 9965 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
58 alephon 9952 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ On
59 infxpen 9897 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6058, 59mpan 690 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6157, 60sylbi 217 . . . . . . . . 9 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
62 breq1 5092 . . . . . . . . . . . 12 (𝑧 = (cf‘(ℵ‘suc 𝐴)) → (𝑧 ≺ (ℵ‘suc 𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6362, 41vtoclri 3543 . . . . . . . . . . 11 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴))
64 alephsucdom 9962 . . . . . . . . . . 11 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) ↔ (cf‘(ℵ‘suc 𝐴)) ≺ (ℵ‘suc 𝐴)))
6563, 64imbitrrid 246 . . . . . . . . . 10 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴)))
66 fvex 6830 . . . . . . . . . . 11 (ℵ‘𝐴) ∈ V
6766xpdom1 8984 . . . . . . . . . 10 ((cf‘(ℵ‘suc 𝐴)) ≼ (ℵ‘𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6865, 67syl6 35 . . . . . . . . 9 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴))))
69 domentr 8930 . . . . . . . . . 10 ((((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
7069expcom 413 . . . . . . . . 9 (((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴) → (((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7161, 68, 70sylsyld 61 . . . . . . . 8 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)))
7271imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
73 domtr 8924 . . . . . . 7 (((ℵ‘suc 𝐴) ≼ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ∧ ((cf‘(ℵ‘suc 𝐴)) × (ℵ‘𝐴)) ≼ (ℵ‘𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
7456, 72, 73syl2anc 584 . . . . . 6 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝐴))
75 domnsym 9011 . . . . . 6 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ On ∧ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴)) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
7776ex 412 . . . 4 (𝐴 ∈ On → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
781, 77mt2d 136 . . 3 (𝐴 ∈ On → ¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴))
79 cfon 10138 . . . . 5 (cf‘(ℵ‘suc 𝐴)) ∈ On
80 cfle 10137 . . . . . 6 (cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴)
81 onsseleq 6343 . . . . . 6 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ⊆ (ℵ‘suc 𝐴) ↔ ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))))
8280, 81mpbii 233 . . . . 5 (((cf‘(ℵ‘suc 𝐴)) ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)))
8379, 2, 82mp2an 692 . . . 4 ((cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) ∨ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8483ori 861 . . 3 (¬ (cf‘(ℵ‘suc 𝐴)) ∈ (ℵ‘suc 𝐴) → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
8578, 84syl 17 . 2 (𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
86 cf0 10134 . . 3 (cf‘∅) = ∅
87 alephfnon 9948 . . . . . . . 8 ℵ Fn On
8887fndmi 6581 . . . . . . 7 dom ℵ = On
8988eleq2i 2821 . . . . . 6 (suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On)
90 onsucb 7742 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
9189, 90bitr4i 278 . . . . 5 (suc 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
92 ndmfv 6849 . . . . 5 (¬ suc 𝐴 ∈ dom ℵ → (ℵ‘suc 𝐴) = ∅)
9391, 92sylnbir 331 . . . 4 𝐴 ∈ On → (ℵ‘suc 𝐴) = ∅)
9493fveq2d 6821 . . 3 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (cf‘∅))
9586, 94, 933eqtr4a 2791 . 2 𝐴 ∈ On → (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴))
9685, 95pm2.61i 182 1 (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  wss 3900  c0 4281   ciun 4939   class class class wbr 5089   × cxp 5612  dom cdm 5614  Oncon0 6302  Lim wlim 6303  suc csuc 6304  wf 6473  1-1wf1 6474  cfv 6477  ωcom 7791  cen 8861  cdom 8862  csdm 8863  cardccrd 9820  cale 9821  cfccf 9822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-har 9438  df-card 9824  df-aleph 9825  df-cf 9826  df-acn 9827  df-ac 9999
This theorem is referenced by:  pwcfsdom  10466  minregex  43546
  Copyright terms: Public domain W3C validator