MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuninsuci Structured version   Visualization version   GIF version

Theorem onuninsuci 7825
Description: An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc 7828. (Contributed by NM, 18-Feb-2004.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuninsuci (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuninsuci
StepHypRef Expression
1 onssi.1 . . . . . . 7 𝐴 ∈ On
21onirri 6474 . . . . . 6 ¬ 𝐴𝐴
3 id 22 . . . . . . . 8 (𝐴 = 𝐴𝐴 = 𝐴)
4 df-suc 6367 . . . . . . . . . . . 12 suc 𝑥 = (𝑥 ∪ {𝑥})
54eqeq2i 2745 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝐴 = (𝑥 ∪ {𝑥}))
6 unieq 4918 . . . . . . . . . . 11 (𝐴 = (𝑥 ∪ {𝑥}) → 𝐴 = (𝑥 ∪ {𝑥}))
75, 6sylbi 216 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝐴 = (𝑥 ∪ {𝑥}))
8 uniun 4933 . . . . . . . . . . 11 (𝑥 ∪ {𝑥}) = ( 𝑥 {𝑥})
9 unisnv 4930 . . . . . . . . . . . 12 {𝑥} = 𝑥
109uneq2i 4159 . . . . . . . . . . 11 ( 𝑥 {𝑥}) = ( 𝑥𝑥)
118, 10eqtri 2760 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = ( 𝑥𝑥)
127, 11eqtrdi 2788 . . . . . . . . 9 (𝐴 = suc 𝑥 𝐴 = ( 𝑥𝑥))
13 tron 6384 . . . . . . . . . . . 12 Tr On
14 eleq1 2821 . . . . . . . . . . . . 13 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
151, 14mpbii 232 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → suc 𝑥 ∈ On)
16 trsuc 6448 . . . . . . . . . . . 12 ((Tr On ∧ suc 𝑥 ∈ On) → 𝑥 ∈ On)
1713, 15, 16sylancr 587 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝑥 ∈ On)
18 ontr 6470 . . . . . . . . . . . 12 (𝑥 ∈ On → Tr 𝑥)
19 df-tr 5265 . . . . . . . . . . . 12 (Tr 𝑥 𝑥𝑥)
2018, 19sylib 217 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥𝑥)
2117, 20syl 17 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝑥𝑥)
22 ssequn1 4179 . . . . . . . . . 10 ( 𝑥𝑥 ↔ ( 𝑥𝑥) = 𝑥)
2321, 22sylib 217 . . . . . . . . 9 (𝐴 = suc 𝑥 → ( 𝑥𝑥) = 𝑥)
2412, 23eqtrd 2772 . . . . . . . 8 (𝐴 = suc 𝑥 𝐴 = 𝑥)
253, 24sylan9eqr 2794 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴 = 𝑥)
26 vex 3478 . . . . . . . . . 10 𝑥 ∈ V
2726sucid 6443 . . . . . . . . 9 𝑥 ∈ suc 𝑥
28 eleq2 2822 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝑥𝐴𝑥 ∈ suc 𝑥))
2927, 28mpbiri 257 . . . . . . . 8 (𝐴 = suc 𝑥𝑥𝐴)
3029adantr 481 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝑥𝐴)
3125, 30eqeltrd 2833 . . . . . 6 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴𝐴)
322, 31mto 196 . . . . 5 ¬ (𝐴 = suc 𝑥𝐴 = 𝐴)
3332imnani 401 . . . 4 (𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
3433rexlimivw 3151 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
35 onuni 7772 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
361, 35ax-mp 5 . . . 4 𝐴 ∈ On
37 onuniorsuc 7821 . . . . . 6 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
381, 37ax-mp 5 . . . . 5 (𝐴 = 𝐴𝐴 = suc 𝐴)
3938ori 859 . . . 4 𝐴 = 𝐴𝐴 = suc 𝐴)
40 suceq 6427 . . . . 5 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
4140rspceeqv 3632 . . . 4 (( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4236, 39, 41sylancr 587 . . 3 𝐴 = 𝐴 → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4334, 42impbii 208 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = 𝐴)
4443con2bii 357 1 (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  cun 3945  wss 3947  {csn 4627   cuni 4907  Tr wtr 5264  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  orduninsuc  7828
  Copyright terms: Public domain W3C validator