Step | Hyp | Ref
| Expression |
1 | | onssi.1 |
. . . . . . 7
⊢ 𝐴 ∈ On |
2 | 1 | onirri 6474 |
. . . . . 6
⊢ ¬
𝐴 ∈ 𝐴 |
3 | | id 22 |
. . . . . . . 8
⊢ (𝐴 = ∪
𝐴 → 𝐴 = ∪ 𝐴) |
4 | | df-suc 6367 |
. . . . . . . . . . . 12
⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) |
5 | 4 | eqeq2i 2745 |
. . . . . . . . . . 11
⊢ (𝐴 = suc 𝑥 ↔ 𝐴 = (𝑥 ∪ {𝑥})) |
6 | | unieq 4918 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑥 ∪ {𝑥}) → ∪ 𝐴 = ∪
(𝑥 ∪ {𝑥})) |
7 | 5, 6 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = ∪
(𝑥 ∪ {𝑥})) |
8 | | uniun 4933 |
. . . . . . . . . . 11
⊢ ∪ (𝑥
∪ {𝑥}) = (∪ 𝑥
∪ ∪ {𝑥}) |
9 | | unisnv 4930 |
. . . . . . . . . . . 12
⊢ ∪ {𝑥}
= 𝑥 |
10 | 9 | uneq2i 4159 |
. . . . . . . . . . 11
⊢ (∪ 𝑥
∪ ∪ {𝑥}) = (∪ 𝑥 ∪ 𝑥) |
11 | 8, 10 | eqtri 2760 |
. . . . . . . . . 10
⊢ ∪ (𝑥
∪ {𝑥}) = (∪ 𝑥
∪ 𝑥) |
12 | 7, 11 | eqtrdi 2788 |
. . . . . . . . 9
⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = (∪
𝑥 ∪ 𝑥)) |
13 | | tron 6384 |
. . . . . . . . . . . 12
⊢ Tr
On |
14 | | eleq1 2821 |
. . . . . . . . . . . . 13
⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) |
15 | 1, 14 | mpbii 232 |
. . . . . . . . . . . 12
⊢ (𝐴 = suc 𝑥 → suc 𝑥 ∈ On) |
16 | | trsuc 6448 |
. . . . . . . . . . . 12
⊢ ((Tr On
∧ suc 𝑥 ∈ On)
→ 𝑥 ∈
On) |
17 | 13, 15, 16 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝐴 = suc 𝑥 → 𝑥 ∈ On) |
18 | | ontr 6470 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → Tr 𝑥) |
19 | | df-tr 5265 |
. . . . . . . . . . . 12
⊢ (Tr 𝑥 ↔ ∪ 𝑥
⊆ 𝑥) |
20 | 18, 19 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → ∪ 𝑥
⊆ 𝑥) |
21 | 17, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 = suc 𝑥 → ∪ 𝑥 ⊆ 𝑥) |
22 | | ssequn1 4179 |
. . . . . . . . . 10
⊢ (∪ 𝑥
⊆ 𝑥 ↔ (∪ 𝑥
∪ 𝑥) = 𝑥) |
23 | 21, 22 | sylib 217 |
. . . . . . . . 9
⊢ (𝐴 = suc 𝑥 → (∪ 𝑥 ∪ 𝑥) = 𝑥) |
24 | 12, 23 | eqtrd 2772 |
. . . . . . . 8
⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = 𝑥) |
25 | 3, 24 | sylan9eqr 2794 |
. . . . . . 7
⊢ ((𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴) → 𝐴 = 𝑥) |
26 | | vex 3478 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
27 | 26 | sucid 6443 |
. . . . . . . . 9
⊢ 𝑥 ∈ suc 𝑥 |
28 | | eleq2 2822 |
. . . . . . . . 9
⊢ (𝐴 = suc 𝑥 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ suc 𝑥)) |
29 | 27, 28 | mpbiri 257 |
. . . . . . . 8
⊢ (𝐴 = suc 𝑥 → 𝑥 ∈ 𝐴) |
30 | 29 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴) → 𝑥 ∈ 𝐴) |
31 | 25, 30 | eqeltrd 2833 |
. . . . . 6
⊢ ((𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴) → 𝐴 ∈ 𝐴) |
32 | 2, 31 | mto 196 |
. . . . 5
⊢ ¬
(𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴) |
33 | 32 | imnani 401 |
. . . 4
⊢ (𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴) |
34 | 33 | rexlimivw 3151 |
. . 3
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴) |
35 | | onuni 7772 |
. . . . 5
⊢ (𝐴 ∈ On → ∪ 𝐴
∈ On) |
36 | 1, 35 | ax-mp 5 |
. . . 4
⊢ ∪ 𝐴
∈ On |
37 | | onuniorsuc 7821 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 = ∪
𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
38 | 1, 37 | ax-mp 5 |
. . . . 5
⊢ (𝐴 = ∪
𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
39 | 38 | ori 859 |
. . . 4
⊢ (¬
𝐴 = ∪ 𝐴
→ 𝐴 = suc ∪ 𝐴) |
40 | | suceq 6427 |
. . . . 5
⊢ (𝑥 = ∪
𝐴 → suc 𝑥 = suc ∪ 𝐴) |
41 | 40 | rspceeqv 3632 |
. . . 4
⊢ ((∪ 𝐴
∈ On ∧ 𝐴 = suc
∪ 𝐴) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
42 | 36, 39, 41 | sylancr 587 |
. . 3
⊢ (¬
𝐴 = ∪ 𝐴
→ ∃𝑥 ∈ On
𝐴 = suc 𝑥) |
43 | 34, 42 | impbii 208 |
. 2
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 ↔ ¬ 𝐴 = ∪ 𝐴) |
44 | 43 | con2bii 357 |
1
⊢ (𝐴 = ∪
𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) |