MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuninsuci Structured version   Visualization version   GIF version

Theorem onuninsuci 7574
Description: A limit ordinal is not a successor ordinal. (Contributed by NM, 18-Feb-2004.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuninsuci (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuninsuci
StepHypRef Expression
1 onssi.1 . . . . . . 7 𝐴 ∈ On
21onirri 6279 . . . . . 6 ¬ 𝐴𝐴
3 id 22 . . . . . . . 8 (𝐴 = 𝐴𝐴 = 𝐴)
4 df-suc 6178 . . . . . . . . . . . 12 suc 𝑥 = (𝑥 ∪ {𝑥})
54eqeq2i 2751 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝐴 = (𝑥 ∪ {𝑥}))
6 unieq 4807 . . . . . . . . . . 11 (𝐴 = (𝑥 ∪ {𝑥}) → 𝐴 = (𝑥 ∪ {𝑥}))
75, 6sylbi 220 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝐴 = (𝑥 ∪ {𝑥}))
8 uniun 4821 . . . . . . . . . . 11 (𝑥 ∪ {𝑥}) = ( 𝑥 {𝑥})
9 vex 3402 . . . . . . . . . . . . 13 𝑥 ∈ V
109unisn 4818 . . . . . . . . . . . 12 {𝑥} = 𝑥
1110uneq2i 4050 . . . . . . . . . . 11 ( 𝑥 {𝑥}) = ( 𝑥𝑥)
128, 11eqtri 2761 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = ( 𝑥𝑥)
137, 12eqtrdi 2789 . . . . . . . . 9 (𝐴 = suc 𝑥 𝐴 = ( 𝑥𝑥))
14 tron 6195 . . . . . . . . . . . 12 Tr On
15 eleq1 2820 . . . . . . . . . . . . 13 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
161, 15mpbii 236 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → suc 𝑥 ∈ On)
17 trsuc 6256 . . . . . . . . . . . 12 ((Tr On ∧ suc 𝑥 ∈ On) → 𝑥 ∈ On)
1814, 16, 17sylancr 590 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝑥 ∈ On)
19 eloni 6182 . . . . . . . . . . . . 13 (𝑥 ∈ On → Ord 𝑥)
20 ordtr 6186 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
2119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ On → Tr 𝑥)
22 df-tr 5137 . . . . . . . . . . . 12 (Tr 𝑥 𝑥𝑥)
2321, 22sylib 221 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥𝑥)
2418, 23syl 17 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝑥𝑥)
25 ssequn1 4070 . . . . . . . . . 10 ( 𝑥𝑥 ↔ ( 𝑥𝑥) = 𝑥)
2624, 25sylib 221 . . . . . . . . 9 (𝐴 = suc 𝑥 → ( 𝑥𝑥) = 𝑥)
2713, 26eqtrd 2773 . . . . . . . 8 (𝐴 = suc 𝑥 𝐴 = 𝑥)
283, 27sylan9eqr 2795 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴 = 𝑥)
299sucid 6251 . . . . . . . . 9 𝑥 ∈ suc 𝑥
30 eleq2 2821 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝑥𝐴𝑥 ∈ suc 𝑥))
3129, 30mpbiri 261 . . . . . . . 8 (𝐴 = suc 𝑥𝑥𝐴)
3231adantr 484 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝑥𝐴)
3328, 32eqeltrd 2833 . . . . . 6 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴𝐴)
342, 33mto 200 . . . . 5 ¬ (𝐴 = suc 𝑥𝐴 = 𝐴)
3534imnani 404 . . . 4 (𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
3635rexlimivw 3192 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
37 onuni 7527 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
381, 37ax-mp 5 . . . 4 𝐴 ∈ On
391onuniorsuci 7573 . . . . 5 (𝐴 = 𝐴𝐴 = suc 𝐴)
4039ori 860 . . . 4 𝐴 = 𝐴𝐴 = suc 𝐴)
41 suceq 6237 . . . . 5 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
4241rspceeqv 3541 . . . 4 (( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4338, 40, 42sylancr 590 . . 3 𝐴 = 𝐴 → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4436, 43impbii 212 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = 𝐴)
4544con2bii 361 1 (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1542  wcel 2114  wrex 3054  cun 3841  wss 3843  {csn 4516   cuni 4796  Tr wtr 5136  Ord word 6171  Oncon0 6172  suc csuc 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-ord 6175  df-on 6176  df-suc 6178
This theorem is referenced by:  orduninsuc  7577
  Copyright terms: Public domain W3C validator