MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuninsuci Structured version   Visualization version   GIF version

Theorem onuninsuci 7306
Description: A limit ordinal is not a successor ordinal. (Contributed by NM, 18-Feb-2004.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuninsuci (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuninsuci
StepHypRef Expression
1 onssi.1 . . . . . . 7 𝐴 ∈ On
21onirri 6073 . . . . . 6 ¬ 𝐴𝐴
3 id 22 . . . . . . . 8 (𝐴 = 𝐴𝐴 = 𝐴)
4 df-suc 5973 . . . . . . . . . . . 12 suc 𝑥 = (𝑥 ∪ {𝑥})
54eqeq2i 2837 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝐴 = (𝑥 ∪ {𝑥}))
6 unieq 4668 . . . . . . . . . . 11 (𝐴 = (𝑥 ∪ {𝑥}) → 𝐴 = (𝑥 ∪ {𝑥}))
75, 6sylbi 209 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝐴 = (𝑥 ∪ {𝑥}))
8 uniun 4681 . . . . . . . . . . 11 (𝑥 ∪ {𝑥}) = ( 𝑥 {𝑥})
9 vex 3417 . . . . . . . . . . . . 13 𝑥 ∈ V
109unisn 4676 . . . . . . . . . . . 12 {𝑥} = 𝑥
1110uneq2i 3993 . . . . . . . . . . 11 ( 𝑥 {𝑥}) = ( 𝑥𝑥)
128, 11eqtri 2849 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = ( 𝑥𝑥)
137, 12syl6eq 2877 . . . . . . . . 9 (𝐴 = suc 𝑥 𝐴 = ( 𝑥𝑥))
14 tron 5990 . . . . . . . . . . . 12 Tr On
15 eleq1 2894 . . . . . . . . . . . . 13 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
161, 15mpbii 225 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → suc 𝑥 ∈ On)
17 trsuc 6051 . . . . . . . . . . . 12 ((Tr On ∧ suc 𝑥 ∈ On) → 𝑥 ∈ On)
1814, 16, 17sylancr 581 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝑥 ∈ On)
19 eloni 5977 . . . . . . . . . . . . 13 (𝑥 ∈ On → Ord 𝑥)
20 ordtr 5981 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
2119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ On → Tr 𝑥)
22 df-tr 4978 . . . . . . . . . . . 12 (Tr 𝑥 𝑥𝑥)
2321, 22sylib 210 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥𝑥)
2418, 23syl 17 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝑥𝑥)
25 ssequn1 4012 . . . . . . . . . 10 ( 𝑥𝑥 ↔ ( 𝑥𝑥) = 𝑥)
2624, 25sylib 210 . . . . . . . . 9 (𝐴 = suc 𝑥 → ( 𝑥𝑥) = 𝑥)
2713, 26eqtrd 2861 . . . . . . . 8 (𝐴 = suc 𝑥 𝐴 = 𝑥)
283, 27sylan9eqr 2883 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴 = 𝑥)
299sucid 6046 . . . . . . . . 9 𝑥 ∈ suc 𝑥
30 eleq2 2895 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝑥𝐴𝑥 ∈ suc 𝑥))
3129, 30mpbiri 250 . . . . . . . 8 (𝐴 = suc 𝑥𝑥𝐴)
3231adantr 474 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝑥𝐴)
3328, 32eqeltrd 2906 . . . . . 6 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴𝐴)
342, 33mto 189 . . . . 5 ¬ (𝐴 = suc 𝑥𝐴 = 𝐴)
3534imnani 391 . . . 4 (𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
3635rexlimivw 3238 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
37 onuni 7259 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
381, 37ax-mp 5 . . . 4 𝐴 ∈ On
391onuniorsuci 7305 . . . . 5 (𝐴 = 𝐴𝐴 = suc 𝐴)
4039ori 892 . . . 4 𝐴 = 𝐴𝐴 = suc 𝐴)
41 suceq 6032 . . . . 5 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
4241rspceeqv 3544 . . . 4 (( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4338, 40, 42sylancr 581 . . 3 𝐴 = 𝐴 → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4436, 43impbii 201 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = 𝐴)
4544con2bii 349 1 (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118  cun 3796  wss 3798  {csn 4399   cuni 4660  Tr wtr 4977  Ord word 5966  Oncon0 5967  suc csuc 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-tr 4978  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-ord 5970  df-on 5971  df-suc 5973
This theorem is referenced by:  orduninsuc  7309
  Copyright terms: Public domain W3C validator