| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliman0 | Structured version Visualization version GIF version | ||
| Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| eliman0 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvbr0 6905 | . . . . 5 ⊢ (𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) | |
| 2 | orcom 870 | . . . . 5 ⊢ ((𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) ↔ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴))) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴)) |
| 4 | 3 | ori 861 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → 𝐴𝐹(𝐹‘𝐴)) |
| 5 | breq1 5122 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹(𝐹‘𝐴) ↔ 𝐴𝐹(𝐹‘𝐴))) | |
| 6 | 5 | rspcev 3601 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴𝐹(𝐹‘𝐴)) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 7 | 4, 6 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 8 | fvex 6889 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 9 | 8 | elima 6052 | . 2 ⊢ ((𝐹‘𝐴) ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∅c0 4308 class class class wbr 5119 “ cima 5657 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: ovima0 7586 setrec2fun 49556 |
| Copyright terms: Public domain | W3C validator |