Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliman0 | Structured version Visualization version GIF version |
Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
eliman0 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvbr0 6801 | . . . . 5 ⊢ (𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) | |
2 | orcom 867 | . . . . 5 ⊢ ((𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) ↔ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴))) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴)) |
4 | 3 | ori 858 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → 𝐴𝐹(𝐹‘𝐴)) |
5 | breq1 5077 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹(𝐹‘𝐴) ↔ 𝐴𝐹(𝐹‘𝐴))) | |
6 | 5 | rspcev 3561 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴𝐹(𝐹‘𝐴)) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
7 | 4, 6 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
8 | fvex 6787 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
9 | 8 | elima 5974 | . 2 ⊢ ((𝐹‘𝐴) ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
10 | 7, 9 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∅c0 4256 class class class wbr 5074 “ cima 5592 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 |
This theorem is referenced by: ovima0 7451 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |