MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliman0 Structured version   Visualization version   GIF version

Theorem eliman0 6930
Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Assertion
Ref Expression
eliman0 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → (𝐹𝐴) ∈ (𝐹𝐵))

Proof of Theorem eliman0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvbr0 6919 . . . . 5 (𝐴𝐹(𝐹𝐴) ∨ (𝐹𝐴) = ∅)
2 orcom 866 . . . . 5 ((𝐴𝐹(𝐹𝐴) ∨ (𝐹𝐴) = ∅) ↔ ((𝐹𝐴) = ∅ ∨ 𝐴𝐹(𝐹𝐴)))
31, 2mpbi 229 . . . 4 ((𝐹𝐴) = ∅ ∨ 𝐴𝐹(𝐹𝐴))
43ori 857 . . 3 (¬ (𝐹𝐴) = ∅ → 𝐴𝐹(𝐹𝐴))
5 breq1 5150 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹(𝐹𝐴) ↔ 𝐴𝐹(𝐹𝐴)))
65rspcev 3611 . . 3 ((𝐴𝐵𝐴𝐹(𝐹𝐴)) → ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
74, 6sylan2 591 . 2 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
8 fvex 6903 . . 3 (𝐹𝐴) ∈ V
98elima 6063 . 2 ((𝐹𝐴) ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
107, 9sylibr 233 1 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → (𝐹𝐴) ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843   = wceq 1539  wcel 2104  wrex 3068  c0 4321   class class class wbr 5147  cima 5678  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fv 6550
This theorem is referenced by:  ovima0  7588  setrec2fun  47824
  Copyright terms: Public domain W3C validator