MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliman0 Structured version   Visualization version   GIF version

Theorem eliman0 6940
Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Assertion
Ref Expression
eliman0 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → (𝐹𝐴) ∈ (𝐹𝐵))

Proof of Theorem eliman0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvbr0 6929 . . . . 5 (𝐴𝐹(𝐹𝐴) ∨ (𝐹𝐴) = ∅)
2 orcom 868 . . . . 5 ((𝐴𝐹(𝐹𝐴) ∨ (𝐹𝐴) = ∅) ↔ ((𝐹𝐴) = ∅ ∨ 𝐴𝐹(𝐹𝐴)))
31, 2mpbi 229 . . . 4 ((𝐹𝐴) = ∅ ∨ 𝐴𝐹(𝐹𝐴))
43ori 859 . . 3 (¬ (𝐹𝐴) = ∅ → 𝐴𝐹(𝐹𝐴))
5 breq1 5155 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹(𝐹𝐴) ↔ 𝐴𝐹(𝐹𝐴)))
65rspcev 3607 . . 3 ((𝐴𝐵𝐴𝐹(𝐹𝐴)) → ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
74, 6sylan2 591 . 2 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
8 fvex 6913 . . 3 (𝐹𝐴) ∈ V
98elima 6073 . 2 ((𝐹𝐴) ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹(𝐹𝐴))
107, 9sylibr 233 1 ((𝐴𝐵 ∧ ¬ (𝐹𝐴) = ∅) → (𝐹𝐴) ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wrex 3059  c0 4324   class class class wbr 5152  cima 5684  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5687  df-cnv 5689  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fv 6561
This theorem is referenced by:  ovima0  7604  setrec2fun  48375
  Copyright terms: Public domain W3C validator