![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliman0 | Structured version Visualization version GIF version |
Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
eliman0 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvbr0 6929 | . . . . 5 ⊢ (𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) | |
2 | orcom 868 | . . . . 5 ⊢ ((𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) ↔ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴))) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴)) |
4 | 3 | ori 859 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → 𝐴𝐹(𝐹‘𝐴)) |
5 | breq1 5155 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹(𝐹‘𝐴) ↔ 𝐴𝐹(𝐹‘𝐴))) | |
6 | 5 | rspcev 3607 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴𝐹(𝐹‘𝐴)) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
7 | 4, 6 | sylan2 591 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
8 | fvex 6913 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
9 | 8 | elima 6073 | . 2 ⊢ ((𝐹‘𝐴) ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
10 | 7, 9 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ∅c0 4324 class class class wbr 5152 “ cima 5684 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5687 df-cnv 5689 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fv 6561 |
This theorem is referenced by: ovima0 7604 setrec2fun 48375 |
Copyright terms: Public domain | W3C validator |