| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliman0 | Structured version Visualization version GIF version | ||
| Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| eliman0 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvbr0 6849 | . . . . 5 ⊢ (𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) | |
| 2 | orcom 870 | . . . . 5 ⊢ ((𝐴𝐹(𝐹‘𝐴) ∨ (𝐹‘𝐴) = ∅) ↔ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴))) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ((𝐹‘𝐴) = ∅ ∨ 𝐴𝐹(𝐹‘𝐴)) |
| 4 | 3 | ori 861 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → 𝐴𝐹(𝐹‘𝐴)) |
| 5 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹(𝐹‘𝐴) ↔ 𝐴𝐹(𝐹‘𝐴))) | |
| 6 | 5 | rspcev 3572 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴𝐹(𝐹‘𝐴)) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 7 | 4, 6 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 8 | fvex 6835 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 9 | 8 | elima 6013 | . 2 ⊢ ((𝐹‘𝐴) ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹(𝐹‘𝐴)) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∅c0 4280 class class class wbr 5089 “ cima 5617 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: ovima0 7525 setrec2fun 49803 |
| Copyright terms: Public domain | W3C validator |