Step | Hyp | Ref
| Expression |
1 | | onprc 7605 |
. . . . 5
⊢ ¬ On
∈ V |
2 | | eleq1 2826 |
. . . . 5
⊢ (ω
= On → (ω ∈ V ↔ On ∈ V)) |
3 | 1, 2 | mtbiri 326 |
. . . 4
⊢ (ω
= On → ¬ ω ∈ V) |
4 | | ssexg 5242 |
. . . . 5
⊢ ((ω
⊆ 𝐴 ∧ 𝐴 ∈ On) → ω
∈ V) |
5 | 4 | ancoms 458 |
. . . 4
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ω ∈
V) |
6 | 3, 5 | nsyl3 138 |
. . 3
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ¬ ω =
On) |
7 | | omon 7699 |
. . . 4
⊢ (ω
∈ On ∨ ω = On) |
8 | 7 | ori 857 |
. . 3
⊢ (¬
ω ∈ On → ω = On) |
9 | 6, 8 | nsyl2 141 |
. 2
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ω ∈
On) |
10 | | id 22 |
. . . . . . 7
⊢ (𝑥 = ω → 𝑥 = ω) |
11 | | suceq 6316 |
. . . . . . 7
⊢ (𝑥 = ω → suc 𝑥 = suc ω) |
12 | 10, 11 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = ω → (𝑥 ≈ suc 𝑥 ↔ ω ≈ suc
ω)) |
13 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
14 | | suceq 6316 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
15 | 13, 14 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑥 ↔ 𝑦 ≈ suc 𝑦)) |
16 | | id 22 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) |
17 | | suceq 6316 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
18 | 16, 17 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦)) |
19 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
20 | | suceq 6316 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) |
21 | 19, 20 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ≈ suc 𝑥 ↔ 𝐴 ≈ suc 𝐴)) |
22 | | limom 7703 |
. . . . . . 7
⊢ Lim
ω |
23 | 22 | limensuci 8889 |
. . . . . 6
⊢ (ω
∈ On → ω ≈ suc ω) |
24 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
25 | 24 | sucex 7633 |
. . . . . . . . . 10
⊢ suc 𝑦 ∈ V |
26 | | en2sn 8785 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ V ∧ suc 𝑦 ∈ V) → {𝑦} ≈ {suc 𝑦}) |
27 | 24, 25, 26 | mp2an 688 |
. . . . . . . . 9
⊢ {𝑦} ≈ {suc 𝑦} |
28 | | eloni 6261 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ On → Ord 𝑦) |
29 | | ordirr 6269 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑦 → ¬ 𝑦 ∈ 𝑦) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → ¬ 𝑦 ∈ 𝑦) |
31 | | disjsn 4644 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑦) |
32 | 30, 31 | sylibr 233 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ On → (𝑦 ∩ {𝑦}) = ∅) |
33 | | eloni 6261 |
. . . . . . . . . . . . 13
⊢ (suc
𝑦 ∈ On → Ord suc
𝑦) |
34 | | ordirr 6269 |
. . . . . . . . . . . . 13
⊢ (Ord suc
𝑦 → ¬ suc 𝑦 ∈ suc 𝑦) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (suc
𝑦 ∈ On → ¬
suc 𝑦 ∈ suc 𝑦) |
36 | | sucelon 7639 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On ↔ suc 𝑦 ∈ On) |
37 | | disjsn 4644 |
. . . . . . . . . . . 12
⊢ ((suc
𝑦 ∩ {suc 𝑦}) = ∅ ↔ ¬ suc
𝑦 ∈ suc 𝑦) |
38 | 35, 36, 37 | 3imtr4i 291 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ On → (suc 𝑦 ∩ {suc 𝑦}) = ∅) |
39 | 32, 38 | jca 511 |
. . . . . . . . . 10
⊢ (𝑦 ∈ On → ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) |
40 | | unen 8790 |
. . . . . . . . . . . 12
⊢ (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (suc 𝑦 ∪ {suc 𝑦})) |
41 | | df-suc 6257 |
. . . . . . . . . . . 12
⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) |
42 | | df-suc 6257 |
. . . . . . . . . . . 12
⊢ suc suc
𝑦 = (suc 𝑦 ∪ {suc 𝑦}) |
43 | 40, 41, 42 | 3brtr4g 5104 |
. . . . . . . . . . 11
⊢ (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → suc 𝑦 ≈ suc suc 𝑦) |
44 | 43 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅) → suc 𝑦 ≈ suc suc 𝑦)) |
45 | 39, 44 | syl5 34 |
. . . . . . . . 9
⊢ ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦)) |
46 | 27, 45 | mpan2 687 |
. . . . . . . 8
⊢ (𝑦 ≈ suc 𝑦 → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦)) |
47 | 46 | com12 32 |
. . . . . . 7
⊢ (𝑦 ∈ On → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦)) |
48 | 47 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑦 ∈ On ∧ ω ∈
On) ∧ ω ⊆ 𝑦) → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦)) |
49 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
50 | | limensuc 8890 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ≈ suc 𝑥) |
51 | 49, 50 | mpan 686 |
. . . . . . . 8
⊢ (Lim
𝑥 → 𝑥 ≈ suc 𝑥) |
52 | 51 | ad2antrr 722 |
. . . . . . 7
⊢ (((Lim
𝑥 ∧ ω ∈ On)
∧ ω ⊆ 𝑥)
→ 𝑥 ≈ suc 𝑥) |
53 | 52 | a1d 25 |
. . . . . 6
⊢ (((Lim
𝑥 ∧ ω ∈ On)
∧ ω ⊆ 𝑥)
→ (∀𝑦 ∈
𝑥 (ω ⊆ 𝑦 → 𝑦 ≈ suc 𝑦) → 𝑥 ≈ suc 𝑥)) |
54 | 12, 15, 18, 21, 23, 48, 53 | tfindsg 7682 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ ω ∈
On) ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) |
55 | 54 | exp31 419 |
. . . 4
⊢ (𝐴 ∈ On → (ω
∈ On → (ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐴))) |
56 | 55 | com23 86 |
. . 3
⊢ (𝐴 ∈ On → (ω
⊆ 𝐴 → (ω
∈ On → 𝐴 ≈
suc 𝐴))) |
57 | 56 | imp 406 |
. 2
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → (ω ∈
On → 𝐴 ≈ suc
𝐴)) |
58 | 9, 57 | mpd 15 |
1
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → 𝐴 ≈ suc 𝐴) |