| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | onprc 7799 | . . . . 5
⊢  ¬ On
∈ V | 
| 2 |  | eleq1 2828 | . . . . 5
⊢ (ω
= On → (ω ∈ V ↔ On ∈ V)) | 
| 3 | 1, 2 | mtbiri 327 | . . . 4
⊢ (ω
= On → ¬ ω ∈ V) | 
| 4 |  | ssexg 5322 | . . . . 5
⊢ ((ω
⊆ 𝐴 ∧ 𝐴 ∈ On) → ω
∈ V) | 
| 5 | 4 | ancoms 458 | . . . 4
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ω ∈
V) | 
| 6 | 3, 5 | nsyl3 138 | . . 3
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ¬ ω =
On) | 
| 7 |  | omon 7900 | . . . 4
⊢ (ω
∈ On ∨ ω = On) | 
| 8 | 7 | ori 861 | . . 3
⊢ (¬
ω ∈ On → ω = On) | 
| 9 | 6, 8 | nsyl2 141 | . 2
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → ω ∈
On) | 
| 10 |  | id 22 | . . . . . . 7
⊢ (𝑥 = ω → 𝑥 = ω) | 
| 11 |  | suceq 6449 | . . . . . . 7
⊢ (𝑥 = ω → suc 𝑥 = suc ω) | 
| 12 | 10, 11 | breq12d 5155 | . . . . . 6
⊢ (𝑥 = ω → (𝑥 ≈ suc 𝑥 ↔ ω ≈ suc
ω)) | 
| 13 |  | id 22 | . . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 14 |  | suceq 6449 | . . . . . . 7
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | 
| 15 | 13, 14 | breq12d 5155 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑥 ↔ 𝑦 ≈ suc 𝑦)) | 
| 16 |  | id 22 | . . . . . . 7
⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | 
| 17 |  | suceq 6449 | . . . . . . 7
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) | 
| 18 | 16, 17 | breq12d 5155 | . . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦)) | 
| 19 |  | id 22 | . . . . . . 7
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | 
| 20 |  | suceq 6449 | . . . . . . 7
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | 
| 21 | 19, 20 | breq12d 5155 | . . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ≈ suc 𝑥 ↔ 𝐴 ≈ suc 𝐴)) | 
| 22 |  | limom 7904 | . . . . . . 7
⊢ Lim
ω | 
| 23 | 22 | limensuci 9194 | . . . . . 6
⊢ (ω
∈ On → ω ≈ suc ω) | 
| 24 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 25 | 24 | sucex 7827 | . . . . . . . . . 10
⊢ suc 𝑦 ∈ V | 
| 26 |  | en2sn 9082 | . . . . . . . . . 10
⊢ ((𝑦 ∈ V ∧ suc 𝑦 ∈ V) → {𝑦} ≈ {suc 𝑦}) | 
| 27 | 24, 25, 26 | mp2an 692 | . . . . . . . . 9
⊢ {𝑦} ≈ {suc 𝑦} | 
| 28 |  | eloni 6393 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ On → Ord 𝑦) | 
| 29 |  | ordirr 6401 | . . . . . . . . . . . . 13
⊢ (Ord
𝑦 → ¬ 𝑦 ∈ 𝑦) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ On → ¬ 𝑦 ∈ 𝑦) | 
| 31 |  | disjsn 4710 | . . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑦) | 
| 32 | 30, 31 | sylibr 234 | . . . . . . . . . . 11
⊢ (𝑦 ∈ On → (𝑦 ∩ {𝑦}) = ∅) | 
| 33 |  | eloni 6393 | . . . . . . . . . . . . 13
⊢ (suc
𝑦 ∈ On → Ord suc
𝑦) | 
| 34 |  | ordirr 6401 | . . . . . . . . . . . . 13
⊢ (Ord suc
𝑦 → ¬ suc 𝑦 ∈ suc 𝑦) | 
| 35 | 33, 34 | syl 17 | . . . . . . . . . . . 12
⊢ (suc
𝑦 ∈ On → ¬
suc 𝑦 ∈ suc 𝑦) | 
| 36 |  | onsucb 7838 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ On ↔ suc 𝑦 ∈ On) | 
| 37 |  | disjsn 4710 | . . . . . . . . . . . 12
⊢ ((suc
𝑦 ∩ {suc 𝑦}) = ∅ ↔ ¬ suc
𝑦 ∈ suc 𝑦) | 
| 38 | 35, 36, 37 | 3imtr4i 292 | . . . . . . . . . . 11
⊢ (𝑦 ∈ On → (suc 𝑦 ∩ {suc 𝑦}) = ∅) | 
| 39 | 32, 38 | jca 511 | . . . . . . . . . 10
⊢ (𝑦 ∈ On → ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) | 
| 40 |  | unen 9087 | . . . . . . . . . . . 12
⊢ (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (suc 𝑦 ∪ {suc 𝑦})) | 
| 41 |  | df-suc 6389 | . . . . . . . . . . . 12
⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | 
| 42 |  | df-suc 6389 | . . . . . . . . . . . 12
⊢ suc suc
𝑦 = (suc 𝑦 ∪ {suc 𝑦}) | 
| 43 | 40, 41, 42 | 3brtr4g 5176 | . . . . . . . . . . 11
⊢ (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → suc 𝑦 ≈ suc suc 𝑦) | 
| 44 | 43 | ex 412 | . . . . . . . . . 10
⊢ ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅) → suc 𝑦 ≈ suc suc 𝑦)) | 
| 45 | 39, 44 | syl5 34 | . . . . . . . . 9
⊢ ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦)) | 
| 46 | 27, 45 | mpan2 691 | . . . . . . . 8
⊢ (𝑦 ≈ suc 𝑦 → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦)) | 
| 47 | 46 | com12 32 | . . . . . . 7
⊢ (𝑦 ∈ On → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦)) | 
| 48 | 47 | ad2antrr 726 | . . . . . 6
⊢ (((𝑦 ∈ On ∧ ω ∈
On) ∧ ω ⊆ 𝑦) → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦)) | 
| 49 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 50 |  | limensuc 9195 | . . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ≈ suc 𝑥) | 
| 51 | 49, 50 | mpan 690 | . . . . . . . 8
⊢ (Lim
𝑥 → 𝑥 ≈ suc 𝑥) | 
| 52 | 51 | ad2antrr 726 | . . . . . . 7
⊢ (((Lim
𝑥 ∧ ω ∈ On)
∧ ω ⊆ 𝑥)
→ 𝑥 ≈ suc 𝑥) | 
| 53 | 52 | a1d 25 | . . . . . 6
⊢ (((Lim
𝑥 ∧ ω ∈ On)
∧ ω ⊆ 𝑥)
→ (∀𝑦 ∈
𝑥 (ω ⊆ 𝑦 → 𝑦 ≈ suc 𝑦) → 𝑥 ≈ suc 𝑥)) | 
| 54 | 12, 15, 18, 21, 23, 48, 53 | tfindsg 7883 | . . . . 5
⊢ (((𝐴 ∈ On ∧ ω ∈
On) ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) | 
| 55 | 54 | exp31 419 | . . . 4
⊢ (𝐴 ∈ On → (ω
∈ On → (ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐴))) | 
| 56 | 55 | com23 86 | . . 3
⊢ (𝐴 ∈ On → (ω
⊆ 𝐴 → (ω
∈ On → 𝐴 ≈
suc 𝐴))) | 
| 57 | 56 | imp 406 | . 2
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → (ω ∈
On → 𝐴 ≈ suc
𝐴)) | 
| 58 | 9, 57 | mpd 15 | 1
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → 𝐴 ≈ suc 𝐴) |