MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infensuc Structured version   Visualization version   GIF version

Theorem infensuc 9221
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
infensuc ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem infensuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onprc 7813 . . . . 5 ¬ On ∈ V
2 eleq1 2832 . . . . 5 (ω = On → (ω ∈ V ↔ On ∈ V))
31, 2mtbiri 327 . . . 4 (ω = On → ¬ ω ∈ V)
4 ssexg 5341 . . . . 5 ((ω ⊆ 𝐴𝐴 ∈ On) → ω ∈ V)
54ancoms 458 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ V)
63, 5nsyl3 138 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ¬ ω = On)
7 omon 7915 . . . 4 (ω ∈ On ∨ ω = On)
87ori 860 . . 3 (¬ ω ∈ On → ω = On)
96, 8nsyl2 141 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ On)
10 id 22 . . . . . . 7 (𝑥 = ω → 𝑥 = ω)
11 suceq 6461 . . . . . . 7 (𝑥 = ω → suc 𝑥 = suc ω)
1210, 11breq12d 5179 . . . . . 6 (𝑥 = ω → (𝑥 ≈ suc 𝑥 ↔ ω ≈ suc ω))
13 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
14 suceq 6461 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1513, 14breq12d 5179 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑥𝑦 ≈ suc 𝑦))
16 id 22 . . . . . . 7 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
17 suceq 6461 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1816, 17breq12d 5179 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦))
19 id 22 . . . . . . 7 (𝑥 = 𝐴𝑥 = 𝐴)
20 suceq 6461 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
2119, 20breq12d 5179 . . . . . 6 (𝑥 = 𝐴 → (𝑥 ≈ suc 𝑥𝐴 ≈ suc 𝐴))
22 limom 7919 . . . . . . 7 Lim ω
2322limensuci 9219 . . . . . 6 (ω ∈ On → ω ≈ suc ω)
24 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
2524sucex 7842 . . . . . . . . . 10 suc 𝑦 ∈ V
26 en2sn 9106 . . . . . . . . . 10 ((𝑦 ∈ V ∧ suc 𝑦 ∈ V) → {𝑦} ≈ {suc 𝑦})
2724, 25, 26mp2an 691 . . . . . . . . 9 {𝑦} ≈ {suc 𝑦}
28 eloni 6405 . . . . . . . . . . . . 13 (𝑦 ∈ On → Ord 𝑦)
29 ordirr 6413 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
3028, 29syl 17 . . . . . . . . . . . 12 (𝑦 ∈ On → ¬ 𝑦𝑦)
31 disjsn 4736 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑦)
3230, 31sylibr 234 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑦 ∩ {𝑦}) = ∅)
33 eloni 6405 . . . . . . . . . . . . 13 (suc 𝑦 ∈ On → Ord suc 𝑦)
34 ordirr 6413 . . . . . . . . . . . . 13 (Ord suc 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
3533, 34syl 17 . . . . . . . . . . . 12 (suc 𝑦 ∈ On → ¬ suc 𝑦 ∈ suc 𝑦)
36 onsucb 7853 . . . . . . . . . . . 12 (𝑦 ∈ On ↔ suc 𝑦 ∈ On)
37 disjsn 4736 . . . . . . . . . . . 12 ((suc 𝑦 ∩ {suc 𝑦}) = ∅ ↔ ¬ suc 𝑦 ∈ suc 𝑦)
3835, 36, 373imtr4i 292 . . . . . . . . . . 11 (𝑦 ∈ On → (suc 𝑦 ∩ {suc 𝑦}) = ∅)
3932, 38jca 511 . . . . . . . . . 10 (𝑦 ∈ On → ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅))
40 unen 9112 . . . . . . . . . . . 12 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (suc 𝑦 ∪ {suc 𝑦}))
41 df-suc 6401 . . . . . . . . . . . 12 suc 𝑦 = (𝑦 ∪ {𝑦})
42 df-suc 6401 . . . . . . . . . . . 12 suc suc 𝑦 = (suc 𝑦 ∪ {suc 𝑦})
4340, 41, 423brtr4g 5200 . . . . . . . . . . 11 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → suc 𝑦 ≈ suc suc 𝑦)
4443ex 412 . . . . . . . . . 10 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅) → suc 𝑦 ≈ suc suc 𝑦))
4539, 44syl5 34 . . . . . . . . 9 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4627, 45mpan2 690 . . . . . . . 8 (𝑦 ≈ suc 𝑦 → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4746com12 32 . . . . . . 7 (𝑦 ∈ On → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
4847ad2antrr 725 . . . . . 6 (((𝑦 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝑦) → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
49 vex 3492 . . . . . . . . 9 𝑥 ∈ V
50 limensuc 9220 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ≈ suc 𝑥)
5149, 50mpan 689 . . . . . . . 8 (Lim 𝑥𝑥 ≈ suc 𝑥)
5251ad2antrr 725 . . . . . . 7 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
5352a1d 25 . . . . . 6 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → (∀𝑦𝑥 (ω ⊆ 𝑦𝑦 ≈ suc 𝑦) → 𝑥 ≈ suc 𝑥))
5412, 15, 18, 21, 23, 48, 53tfindsg 7898 . . . . 5 (((𝐴 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
5554exp31 419 . . . 4 (𝐴 ∈ On → (ω ∈ On → (ω ⊆ 𝐴𝐴 ≈ suc 𝐴)))
5655com23 86 . . 3 (𝐴 ∈ On → (ω ⊆ 𝐴 → (ω ∈ On → 𝐴 ≈ suc 𝐴)))
5756imp 406 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (ω ∈ On → 𝐴 ≈ suc 𝐴))
589, 57mpd 15 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  ωcom 7903  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-er 8763  df-en 9004  df-dom 9005
This theorem is referenced by:  cardlim  10041  cardsucinf  10053
  Copyright terms: Public domain W3C validator