MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infensuc Structured version   Visualization version   GIF version

Theorem infensuc 8679
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
infensuc ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem infensuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onprc 7479 . . . . 5 ¬ On ∈ V
2 eleq1 2877 . . . . 5 (ω = On → (ω ∈ V ↔ On ∈ V))
31, 2mtbiri 330 . . . 4 (ω = On → ¬ ω ∈ V)
4 ssexg 5191 . . . . 5 ((ω ⊆ 𝐴𝐴 ∈ On) → ω ∈ V)
54ancoms 462 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ V)
63, 5nsyl3 140 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ¬ ω = On)
7 omon 7571 . . . 4 (ω ∈ On ∨ ω = On)
87ori 858 . . 3 (¬ ω ∈ On → ω = On)
96, 8nsyl2 143 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ On)
10 id 22 . . . . . . 7 (𝑥 = ω → 𝑥 = ω)
11 suceq 6224 . . . . . . 7 (𝑥 = ω → suc 𝑥 = suc ω)
1210, 11breq12d 5043 . . . . . 6 (𝑥 = ω → (𝑥 ≈ suc 𝑥 ↔ ω ≈ suc ω))
13 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
14 suceq 6224 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1513, 14breq12d 5043 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑥𝑦 ≈ suc 𝑦))
16 id 22 . . . . . . 7 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
17 suceq 6224 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1816, 17breq12d 5043 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦))
19 id 22 . . . . . . 7 (𝑥 = 𝐴𝑥 = 𝐴)
20 suceq 6224 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
2119, 20breq12d 5043 . . . . . 6 (𝑥 = 𝐴 → (𝑥 ≈ suc 𝑥𝐴 ≈ suc 𝐴))
22 limom 7575 . . . . . . 7 Lim ω
2322limensuci 8677 . . . . . 6 (ω ∈ On → ω ≈ suc ω)
24 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
2524sucex 7506 . . . . . . . . . 10 suc 𝑦 ∈ V
26 en2sn 8576 . . . . . . . . . 10 ((𝑦 ∈ V ∧ suc 𝑦 ∈ V) → {𝑦} ≈ {suc 𝑦})
2724, 25, 26mp2an 691 . . . . . . . . 9 {𝑦} ≈ {suc 𝑦}
28 eloni 6169 . . . . . . . . . . . . 13 (𝑦 ∈ On → Ord 𝑦)
29 ordirr 6177 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
3028, 29syl 17 . . . . . . . . . . . 12 (𝑦 ∈ On → ¬ 𝑦𝑦)
31 disjsn 4607 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑦)
3230, 31sylibr 237 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑦 ∩ {𝑦}) = ∅)
33 eloni 6169 . . . . . . . . . . . . 13 (suc 𝑦 ∈ On → Ord suc 𝑦)
34 ordirr 6177 . . . . . . . . . . . . 13 (Ord suc 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
3533, 34syl 17 . . . . . . . . . . . 12 (suc 𝑦 ∈ On → ¬ suc 𝑦 ∈ suc 𝑦)
36 sucelon 7512 . . . . . . . . . . . 12 (𝑦 ∈ On ↔ suc 𝑦 ∈ On)
37 disjsn 4607 . . . . . . . . . . . 12 ((suc 𝑦 ∩ {suc 𝑦}) = ∅ ↔ ¬ suc 𝑦 ∈ suc 𝑦)
3835, 36, 373imtr4i 295 . . . . . . . . . . 11 (𝑦 ∈ On → (suc 𝑦 ∩ {suc 𝑦}) = ∅)
3932, 38jca 515 . . . . . . . . . 10 (𝑦 ∈ On → ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅))
40 unen 8579 . . . . . . . . . . . 12 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (suc 𝑦 ∪ {suc 𝑦}))
41 df-suc 6165 . . . . . . . . . . . 12 suc 𝑦 = (𝑦 ∪ {𝑦})
42 df-suc 6165 . . . . . . . . . . . 12 suc suc 𝑦 = (suc 𝑦 ∪ {suc 𝑦})
4340, 41, 423brtr4g 5064 . . . . . . . . . . 11 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → suc 𝑦 ≈ suc suc 𝑦)
4443ex 416 . . . . . . . . . 10 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅) → suc 𝑦 ≈ suc suc 𝑦))
4539, 44syl5 34 . . . . . . . . 9 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4627, 45mpan2 690 . . . . . . . 8 (𝑦 ≈ suc 𝑦 → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4746com12 32 . . . . . . 7 (𝑦 ∈ On → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
4847ad2antrr 725 . . . . . 6 (((𝑦 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝑦) → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
49 vex 3444 . . . . . . . . 9 𝑥 ∈ V
50 limensuc 8678 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ≈ suc 𝑥)
5149, 50mpan 689 . . . . . . . 8 (Lim 𝑥𝑥 ≈ suc 𝑥)
5251ad2antrr 725 . . . . . . 7 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
5352a1d 25 . . . . . 6 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → (∀𝑦𝑥 (ω ⊆ 𝑦𝑦 ≈ suc 𝑦) → 𝑥 ≈ suc 𝑥))
5412, 15, 18, 21, 23, 48, 53tfindsg 7555 . . . . 5 (((𝐴 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
5554exp31 423 . . . 4 (𝐴 ∈ On → (ω ∈ On → (ω ⊆ 𝐴𝐴 ≈ suc 𝐴)))
5655com23 86 . . 3 (𝐴 ∈ On → (ω ⊆ 𝐴 → (ω ∈ On → 𝐴 ≈ suc 𝐴)))
5756imp 410 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (ω ∈ On → 𝐴 ≈ suc 𝐴))
589, 57mpd 15 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  ωcom 7560  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494
This theorem is referenced by:  cardlim  9385  cardsucinf  9397
  Copyright terms: Public domain W3C validator