MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omelon2 Structured version   Visualization version   GIF version

Theorem omelon2 7819
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.)
Assertion
Ref Expression
omelon2 (ω ∈ V → ω ∈ On)

Proof of Theorem omelon2
StepHypRef Expression
1 omon 7818 . . . 4 (ω ∈ On ∨ ω = On)
21ori 861 . . 3 (¬ ω ∈ On → ω = On)
3 onprc 7718 . . . 4 ¬ On ∈ V
4 eleq1 2816 . . . 4 (ω = On → (ω ∈ V ↔ On ∈ V))
53, 4mtbiri 327 . . 3 (ω = On → ¬ ω ∈ V)
62, 5syl 17 . 2 (¬ ω ∈ On → ¬ ω ∈ V)
76con4i 114 1 (ω ∈ V → ω ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  Oncon0 6311  ωcom 7806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-lim 6316  df-om 7807
This theorem is referenced by:  oaabs  8573  omelon  9561  fictb  10157  axdc3lem  10363
  Copyright terms: Public domain W3C validator