| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon2 | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omon 7814 | . . . 4 ⊢ (ω ∈ On ∨ ω = On) | |
| 2 | 1 | ori 861 | . . 3 ⊢ (¬ ω ∈ On → ω = On) |
| 3 | onprc 7717 | . . . 4 ⊢ ¬ On ∈ V | |
| 4 | eleq1 2819 | . . . 4 ⊢ (ω = On → (ω ∈ V ↔ On ∈ V)) | |
| 5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (ω = On → ¬ ω ∈ V) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (¬ ω ∈ On → ¬ ω ∈ V) |
| 7 | 6 | con4i 114 | 1 ⊢ (ω ∈ V → ω ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 Oncon0 6312 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6315 df-on 6316 df-lim 6317 df-om 7803 |
| This theorem is referenced by: oaabs 8569 omelon 9542 fictb 10141 axdc3lem 10347 |
| Copyright terms: Public domain | W3C validator |