Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omelon2 | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omon 7595 | . . . 4 ⊢ (ω ∈ On ∨ ω = On) | |
2 | 1 | ori 858 | . . 3 ⊢ (¬ ω ∈ On → ω = On) |
3 | onprc 7503 | . . . 4 ⊢ ¬ On ∈ V | |
4 | eleq1 2839 | . . . 4 ⊢ (ω = On → (ω ∈ V ↔ On ∈ V)) | |
5 | 3, 4 | mtbiri 330 | . . 3 ⊢ (ω = On → ¬ ω ∈ V) |
6 | 2, 5 | syl 17 | . 2 ⊢ (¬ ω ∈ On → ¬ ω ∈ V) |
7 | 6 | con4i 114 | 1 ⊢ (ω ∈ V → ω ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 Oncon0 6173 ωcom 7584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-tr 5142 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-ord 6176 df-on 6177 df-lim 6178 df-om 7585 |
This theorem is referenced by: oaabs 8286 omelon 9147 fictb 9710 axdc3lem 9915 |
Copyright terms: Public domain | W3C validator |