MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omelon2 Structured version   Visualization version   GIF version

Theorem omelon2 7916
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.)
Assertion
Ref Expression
omelon2 (ω ∈ V → ω ∈ On)

Proof of Theorem omelon2
StepHypRef Expression
1 omon 7915 . . . 4 (ω ∈ On ∨ ω = On)
21ori 860 . . 3 (¬ ω ∈ On → ω = On)
3 onprc 7813 . . . 4 ¬ On ∈ V
4 eleq1 2832 . . . 4 (ω = On → (ω ∈ V ↔ On ∈ V))
53, 4mtbiri 327 . . 3 (ω = On → ¬ ω ∈ V)
62, 5syl 17 . 2 (¬ ω ∈ On → ¬ ω ∈ V)
76con4i 114 1 (ω ∈ V → ω ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  Oncon0 6395  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-om 7904
This theorem is referenced by:  oaabs  8704  omelon  9715  fictb  10313  axdc3lem  10519
  Copyright terms: Public domain W3C validator