MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omelon2 Structured version   Visualization version   GIF version

Theorem omelon2 7700
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.)
Assertion
Ref Expression
omelon2 (ω ∈ V → ω ∈ On)

Proof of Theorem omelon2
StepHypRef Expression
1 omon 7699 . . . 4 (ω ∈ On ∨ ω = On)
21ori 857 . . 3 (¬ ω ∈ On → ω = On)
3 onprc 7605 . . . 4 ¬ On ∈ V
4 eleq1 2826 . . . 4 (ω = On → (ω ∈ V ↔ On ∈ V))
53, 4mtbiri 326 . . 3 (ω = On → ¬ ω ∈ V)
62, 5syl 17 . 2 (¬ ω ∈ On → ¬ ω ∈ V)
76con4i 114 1 (ω ∈ V → ω ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  Oncon0 6251  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-om 7688
This theorem is referenced by:  oaabs  8438  omelon  9334  fictb  9932  axdc3lem  10137
  Copyright terms: Public domain W3C validator