| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon2 | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omon 7818 | . . . 4 ⊢ (ω ∈ On ∨ ω = On) | |
| 2 | 1 | ori 861 | . . 3 ⊢ (¬ ω ∈ On → ω = On) |
| 3 | onprc 7718 | . . . 4 ⊢ ¬ On ∈ V | |
| 4 | eleq1 2816 | . . . 4 ⊢ (ω = On → (ω ∈ V ↔ On ∈ V)) | |
| 5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (ω = On → ¬ ω ∈ V) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (¬ ω ∈ On → ¬ ω ∈ V) |
| 7 | 6 | con4i 114 | 1 ⊢ (ω ∈ V → ω ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 Oncon0 6311 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-om 7807 |
| This theorem is referenced by: oaabs 8573 omelon 9561 fictb 10157 axdc3lem 10363 |
| Copyright terms: Public domain | W3C validator |