![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon2 | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omon 7915 | . . . 4 ⊢ (ω ∈ On ∨ ω = On) | |
2 | 1 | ori 860 | . . 3 ⊢ (¬ ω ∈ On → ω = On) |
3 | onprc 7813 | . . . 4 ⊢ ¬ On ∈ V | |
4 | eleq1 2832 | . . . 4 ⊢ (ω = On → (ω ∈ V ↔ On ∈ V)) | |
5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (ω = On → ¬ ω ∈ V) |
6 | 2, 5 | syl 17 | . 2 ⊢ (¬ ω ∈ On → ¬ ω ∈ V) |
7 | 6 | con4i 114 | 1 ⊢ (ω ∈ V → ω ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 Oncon0 6395 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-om 7904 |
This theorem is referenced by: oaabs 8704 omelon 9715 fictb 10313 axdc3lem 10519 |
Copyright terms: Public domain | W3C validator |