| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon2 | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omon 7803 | . . . 4 ⊢ (ω ∈ On ∨ ω = On) | |
| 2 | 1 | ori 861 | . . 3 ⊢ (¬ ω ∈ On → ω = On) |
| 3 | onprc 7706 | . . . 4 ⊢ ¬ On ∈ V | |
| 4 | eleq1 2817 | . . . 4 ⊢ (ω = On → (ω ∈ V ↔ On ∈ V)) | |
| 5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (ω = On → ¬ ω ∈ V) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (¬ ω ∈ On → ¬ ω ∈ V) |
| 7 | 6 | con4i 114 | 1 ⊢ (ω ∈ V → ω ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 Oncon0 6302 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 df-lim 6307 df-om 7792 |
| This theorem is referenced by: oaabs 8558 omelon 9531 fictb 10127 axdc3lem 10333 |
| Copyright terms: Public domain | W3C validator |