MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltres Structured version   Visualization version   GIF version

Theorem sltres 27546
Description: If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltres ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))

Proof of Theorem sltres
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noreson 27544 . . . . . . 7 ((𝐴 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
213adant2 1128 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
3 noreson 27544 . . . . . . 7 ((𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
433adant1 1127 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
5 sltintdifex 27545 . . . . . . 7 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V))
6 onintrab 7780 . . . . . . 7 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V ↔ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
75, 6imbitrdi 250 . . . . . 6 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
82, 4, 7syl2anc 583 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
98imp 406 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
10 simpl3 1190 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝑋 ∈ On)
11 sltval2 27540 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
122, 4, 11syl2anc 583 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
13 fvex 6897 . . . . . . . . . . . . 13 ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
14 fvex 6897 . . . . . . . . . . . . 13 ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
1513, 14brtp 5516 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
16 1n0 8486 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
1716neii 2936 . . . . . . . . . . . . . . . . 17 ¬ 1o = ∅
18 eqeq1 2730 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 1o = ∅))
1917, 18mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
20 ndmfv 6919 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
2119, 20nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2322orcd 870 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
2421adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2524orcd 870 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
26 2on 8478 . . . . . . . . . . . . . . . . . . . . 21 2o ∈ On
2726elexi 3488 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
2827prid2 4762 . . . . . . . . . . . . . . . . . . 19 2o ∈ {1o, 2o}
2928nosgnn0i 27543 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2o
3029neii 2936 . . . . . . . . . . . . . . . . 17 ¬ ∅ = 2o
31 eqeq1 2730 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 2o = ∅))
32 eqcom 2733 . . . . . . . . . . . . . . . . . 18 (2o = ∅ ↔ ∅ = 2o)
3331, 32bitrdi 287 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ ∅ = 2o))
3430, 33mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
35 ndmfv 6919 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
3634, 35nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3736adantl 481 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3837olcd 871 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
3923, 25, 383jaoi 1424 . . . . . . . . . . . 12 (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4015, 39sylbi 216 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4112, 40syl6bi 253 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))))
4241imp 406 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
43 dmres 5996 . . . . . . . . . . . 12 dom (𝐴𝑋) = (𝑋 ∩ dom 𝐴)
4443elin2 4192 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
4544simplbi 497 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
46 dmres 5996 . . . . . . . . . . . 12 dom (𝐵𝑋) = (𝑋 ∩ dom 𝐵)
4746elin2 4192 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
4847simplbi 497 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
4945, 48jaoi 854 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
5042, 49syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
51 onelss 6399 . . . . . . . 8 (𝑋 ∈ On → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋))
5210, 50, 51sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋)
5352sselda 3977 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦𝑋)
54 onelon 6382 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
559, 54sylan 579 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
56 intss1 4960 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦)
57 ontri1 6391 . . . . . . . . . . . . 13 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦 ↔ ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5856, 57imbitrid 243 . . . . . . . . . . . 12 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5958con2d 134 . . . . . . . . . . 11 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
609, 59sylan 579 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6160impancom 451 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝑦 ∈ On → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6255, 61mpd 15 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})
63 fveq2 6884 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐴𝑋)‘𝑎) = ((𝐴𝑋)‘𝑦))
64 fveq2 6884 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐵𝑋)‘𝑎) = ((𝐵𝑋)‘𝑦))
6563, 64neeq12d 2996 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎) ↔ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6665elrab 3678 . . . . . . . . . 10 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ↔ (𝑦 ∈ On ∧ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6766simplbi2 500 . . . . . . . . 9 (𝑦 ∈ On → (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) → 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6867con3d 152 . . . . . . . 8 (𝑦 ∈ On → (¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6955, 62, 68sylc 65 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
70 df-ne 2935 . . . . . . . 8 (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
7170con2bii 357 . . . . . . 7 (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
7269, 71sylibr 233 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
73 fvres 6903 . . . . . . . 8 (𝑦𝑋 → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
74 fvres 6903 . . . . . . . 8 (𝑦𝑋 → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
7573, 74eqeq12d 2742 . . . . . . 7 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
7675biimpd 228 . . . . . 6 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) → (𝐴𝑦) = (𝐵𝑦)))
7753, 72, 76sylc 65 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
7877ralrimiva 3140 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦))
79 fvresval 7350 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8079ori 858 . . . . . . . . . . . . . 14 (¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8119, 80nsyl2 141 . . . . . . . . . . . . 13 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
8281eqcomd 2732 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
83 eqeq2 2738 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8482, 83mpbid 231 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8584adantr 480 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8685a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8721ad2antrl 725 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
8887, 45syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
89 nofun 27533 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → Fun (𝐵𝑋))
90 fvelrn 7071 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐵𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋))
9190ex 412 . . . . . . . . . . . . . . . . . 18 (Fun (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
93 norn 27535 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → ran (𝐵𝑋) ⊆ {1o, 2o})
9493sseld 3976 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
9592, 94syld 47 . . . . . . . . . . . . . . . 16 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
96 nosgnn0 27542 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ {1o, 2o}
97 eleq1 2815 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
9896, 97mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
9995, 98nsyli 157 . . . . . . . . . . . . . . 15 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
1004, 99syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
101100imp 406 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
102101adantrl 713 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
10347simplbi2 500 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
104103con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
10588, 102, 104sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵)
106 ndmfv 6919 . . . . . . . . . . 11 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
107105, 106syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
108107ex 412 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
10986, 108jcad 512 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)))
110 fvresval 7350 . . . . . . . . . . . . . 14 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
111110ori 858 . . . . . . . . . . . . 13 (¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
11234, 111nsyl2 141 . . . . . . . . . . . 12 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
113112eqcomd 2732 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
114 eqeq2 2738 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
115113, 114mpbid 231 . . . . . . . . . 10 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
11684, 115anim12i 612 . . . . . . . . 9 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
117116a1i 11 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
11836ad2antll 726 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
119118, 48syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
120 nofun 27533 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → Fun (𝐴𝑋))
121 fvelrn 7071 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐴𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋))
122121ex 412 . . . . . . . . . . . . . . . . . 18 (Fun (𝐴𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
123120, 122syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
124 norn 27535 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → ran (𝐴𝑋) ⊆ {1o, 2o})
125124sseld 3976 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
126123, 125syld 47 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
127 eleq1 2815 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
12896, 127mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
129126, 128nsyli 157 . . . . . . . . . . . . . . 15 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
1302, 129syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
131130imp 406 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
132131adantrr 714 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
13344simplbi2 500 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
134133con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
135119, 132, 134sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴)
136135ex 412 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
137 ndmfv 6919 . . . . . . . . . 10 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
138136, 137syl6 35 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
139115adantl 481 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
140139a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
141138, 140jcad 512 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
142109, 117, 1413orim123d 1440 . . . . . . 7 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))))
143 fvex 6897 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
144 fvex 6897 . . . . . . . 8 (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
145143, 144brtp 5516 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
146142, 15, 1453imtr4g 296 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
14712, 146sylbid 239 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
148147imp 406 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
149 raleq 3316 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦)))
150 fveq2 6884 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
151 fveq2 6884 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
152150, 151breq12d 5154 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
153149, 152anbi12d 630 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))))
154153rspcev 3606 . . . 4 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
1559, 78, 148, 154syl12anc 834 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
156 sltval 27531 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
1571563adant3 1129 . . . 4 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
158157adantr 480 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
159155, 158mpbird 257 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝐴 <s 𝐵)
160159ex 412 1 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  Vcvv 3468  wss 3943  c0 4317  {cpr 4625  {ctp 4627  cop 4629   cint 4943   class class class wbr 5141  dom cdm 5669  ran crn 5670  cres 5671  Oncon0 6357  Fun wfun 6530  cfv 6536  1oc1o 8457  2oc2o 8458   No csur 27524   <s cslt 27525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1o 8464  df-2o 8465  df-no 27527  df-slt 27528
This theorem is referenced by:  noresle  27581  nosupbnd1lem1  27592  nosupbnd1lem2  27593  nosupbnd1  27598  nosupbnd2lem1  27599  nosupbnd2  27600  noinfbnd1lem1  27607  noinfbnd1lem2  27608  noinfbnd1  27613  noinfbnd2lem1  27614  noinfbnd2  27615  noetasuplem3  27619  noetasuplem4  27620  noetainflem3  27623  noetainflem4  27624
  Copyright terms: Public domain W3C validator