MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltres Structured version   Visualization version   GIF version

Theorem sltres 27010
Description: If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltres ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))

Proof of Theorem sltres
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noreson 27008 . . . . . . 7 ((𝐴 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
213adant2 1131 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
3 noreson 27008 . . . . . . 7 ((𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
433adant1 1130 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
5 sltintdifex 27009 . . . . . . 7 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V))
6 onintrab 7731 . . . . . . 7 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V ↔ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
75, 6syl6ib 250 . . . . . 6 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
82, 4, 7syl2anc 584 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
98imp 407 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
10 simpl3 1193 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝑋 ∈ On)
11 sltval2 27004 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
122, 4, 11syl2anc 584 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
13 fvex 6855 . . . . . . . . . . . . 13 ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
14 fvex 6855 . . . . . . . . . . . . 13 ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
1513, 14brtp 5480 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
16 1n0 8434 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
1716neii 2945 . . . . . . . . . . . . . . . . 17 ¬ 1o = ∅
18 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 1o = ∅))
1917, 18mtbiri 326 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
20 ndmfv 6877 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
2119, 20nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2221adantr 481 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2322orcd 871 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
2421adantr 481 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2524orcd 871 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
26 2on 8426 . . . . . . . . . . . . . . . . . . . . 21 2o ∈ On
2726elexi 3464 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
2827prid2 4724 . . . . . . . . . . . . . . . . . . 19 2o ∈ {1o, 2o}
2928nosgnn0i 27007 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2o
3029neii 2945 . . . . . . . . . . . . . . . . 17 ¬ ∅ = 2o
31 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 2o = ∅))
32 eqcom 2743 . . . . . . . . . . . . . . . . . 18 (2o = ∅ ↔ ∅ = 2o)
3331, 32bitrdi 286 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ ∅ = 2o))
3430, 33mtbiri 326 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
35 ndmfv 6877 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
3634, 35nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3736adantl 482 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3837olcd 872 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
3923, 25, 383jaoi 1427 . . . . . . . . . . . 12 (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4015, 39sylbi 216 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4112, 40syl6bi 252 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))))
4241imp 407 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
43 dmres 5959 . . . . . . . . . . . 12 dom (𝐴𝑋) = (𝑋 ∩ dom 𝐴)
4443elin2 4157 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
4544simplbi 498 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
46 dmres 5959 . . . . . . . . . . . 12 dom (𝐵𝑋) = (𝑋 ∩ dom 𝐵)
4746elin2 4157 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
4847simplbi 498 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
4945, 48jaoi 855 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
5042, 49syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
51 onelss 6359 . . . . . . . 8 (𝑋 ∈ On → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋))
5210, 50, 51sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋)
5352sselda 3944 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦𝑋)
54 onelon 6342 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
559, 54sylan 580 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
56 intss1 4924 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦)
57 ontri1 6351 . . . . . . . . . . . . 13 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦 ↔ ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5856, 57imbitrid 243 . . . . . . . . . . . 12 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5958con2d 134 . . . . . . . . . . 11 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
609, 59sylan 580 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6160impancom 452 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝑦 ∈ On → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6255, 61mpd 15 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})
63 fveq2 6842 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐴𝑋)‘𝑎) = ((𝐴𝑋)‘𝑦))
64 fveq2 6842 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐵𝑋)‘𝑎) = ((𝐵𝑋)‘𝑦))
6563, 64neeq12d 3005 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎) ↔ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6665elrab 3645 . . . . . . . . . 10 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ↔ (𝑦 ∈ On ∧ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6766simplbi2 501 . . . . . . . . 9 (𝑦 ∈ On → (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) → 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6867con3d 152 . . . . . . . 8 (𝑦 ∈ On → (¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6955, 62, 68sylc 65 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
70 df-ne 2944 . . . . . . . 8 (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
7170con2bii 357 . . . . . . 7 (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
7269, 71sylibr 233 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
73 fvres 6861 . . . . . . . 8 (𝑦𝑋 → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
74 fvres 6861 . . . . . . . 8 (𝑦𝑋 → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
7573, 74eqeq12d 2752 . . . . . . 7 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
7675biimpd 228 . . . . . 6 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) → (𝐴𝑦) = (𝐵𝑦)))
7753, 72, 76sylc 65 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
7877ralrimiva 3143 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦))
79 fvresval 7303 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8079ori 859 . . . . . . . . . . . . . 14 (¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8119, 80nsyl2 141 . . . . . . . . . . . . 13 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
8281eqcomd 2742 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
83 eqeq2 2748 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8482, 83mpbid 231 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8584adantr 481 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8685a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8721ad2antrl 726 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
8887, 45syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
89 nofun 26997 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → Fun (𝐵𝑋))
90 fvelrn 7027 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐵𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋))
9190ex 413 . . . . . . . . . . . . . . . . . 18 (Fun (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
93 norn 26999 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → ran (𝐵𝑋) ⊆ {1o, 2o})
9493sseld 3943 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
9592, 94syld 47 . . . . . . . . . . . . . . . 16 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
96 nosgnn0 27006 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ {1o, 2o}
97 eleq1 2825 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
9896, 97mtbiri 326 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
9995, 98nsyli 157 . . . . . . . . . . . . . . 15 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
1004, 99syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
101100imp 407 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
102101adantrl 714 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
10347simplbi2 501 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
104103con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
10588, 102, 104sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵)
106 ndmfv 6877 . . . . . . . . . . 11 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
107105, 106syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
108107ex 413 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
10986, 108jcad 513 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)))
110 fvresval 7303 . . . . . . . . . . . . . 14 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
111110ori 859 . . . . . . . . . . . . 13 (¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
11234, 111nsyl2 141 . . . . . . . . . . . 12 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
113112eqcomd 2742 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
114 eqeq2 2748 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
115113, 114mpbid 231 . . . . . . . . . 10 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
11684, 115anim12i 613 . . . . . . . . 9 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
117116a1i 11 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
11836ad2antll 727 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
119118, 48syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
120 nofun 26997 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → Fun (𝐴𝑋))
121 fvelrn 7027 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐴𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋))
122121ex 413 . . . . . . . . . . . . . . . . . 18 (Fun (𝐴𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
123120, 122syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
124 norn 26999 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → ran (𝐴𝑋) ⊆ {1o, 2o})
125124sseld 3943 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
126123, 125syld 47 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
127 eleq1 2825 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
12896, 127mtbiri 326 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
129126, 128nsyli 157 . . . . . . . . . . . . . . 15 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
1302, 129syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
131130imp 407 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
132131adantrr 715 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
13344simplbi2 501 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
134133con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
135119, 132, 134sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴)
136135ex 413 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
137 ndmfv 6877 . . . . . . . . . 10 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
138136, 137syl6 35 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
139115adantl 482 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
140139a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
141138, 140jcad 513 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
142109, 117, 1413orim123d 1444 . . . . . . 7 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))))
143 fvex 6855 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
144 fvex 6855 . . . . . . . 8 (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
145143, 144brtp 5480 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
146142, 15, 1453imtr4g 295 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
14712, 146sylbid 239 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
148147imp 407 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
149 raleq 3309 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦)))
150 fveq2 6842 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
151 fveq2 6842 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
152150, 151breq12d 5118 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
153149, 152anbi12d 631 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))))
154153rspcev 3581 . . . 4 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
1559, 78, 148, 154syl12anc 835 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
156 sltval 26995 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
1571563adant3 1132 . . . 4 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
158157adantr 481 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
159155, 158mpbird 256 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝐴 <s 𝐵)
160159ex 413 1 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  {cpr 4588  {ctp 4590  cop 4592   cint 4907   class class class wbr 5105  dom cdm 5633  ran crn 5634  cres 5635  Oncon0 6317  Fun wfun 6490  cfv 6496  1oc1o 8405  2oc2o 8406   No csur 26988   <s cslt 26989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992
This theorem is referenced by:  noresle  27045  nosupbnd1lem1  27056  nosupbnd1lem2  27057  nosupbnd1  27062  nosupbnd2lem1  27063  nosupbnd2  27064  noinfbnd1lem1  27071  noinfbnd1lem2  27072  noinfbnd1  27077  noinfbnd2lem1  27078  noinfbnd2  27079  noetasuplem3  27083  noetasuplem4  27084  noetainflem3  27087  noetainflem4  27088
  Copyright terms: Public domain W3C validator