MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltres Structured version   Visualization version   GIF version

Theorem sltres 27572
Description: If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltres ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))

Proof of Theorem sltres
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noreson 27570 . . . . . . 7 ((𝐴 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
213adant2 1131 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
3 noreson 27570 . . . . . . 7 ((𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
433adant1 1130 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
5 sltintdifex 27571 . . . . . . 7 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V))
6 onintrab 7732 . . . . . . 7 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V ↔ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
75, 6imbitrdi 251 . . . . . 6 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
82, 4, 7syl2anc 584 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
98imp 406 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
10 simpl3 1194 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝑋 ∈ On)
11 sltval2 27566 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
122, 4, 11syl2anc 584 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
13 fvex 6835 . . . . . . . . . . . . 13 ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
14 fvex 6835 . . . . . . . . . . . . 13 ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
1513, 14brtp 5466 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
16 1n0 8406 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
1716neii 2927 . . . . . . . . . . . . . . . . 17 ¬ 1o = ∅
18 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 1o = ∅))
1917, 18mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
20 ndmfv 6855 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
2119, 20nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2322orcd 873 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
2421adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2524orcd 873 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
26 2on 8401 . . . . . . . . . . . . . . . . . . . . 21 2o ∈ On
2726elexi 3459 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
2827prid2 4715 . . . . . . . . . . . . . . . . . . 19 2o ∈ {1o, 2o}
2928nosgnn0i 27569 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2o
3029neii 2927 . . . . . . . . . . . . . . . . 17 ¬ ∅ = 2o
31 eqeq1 2733 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 2o = ∅))
32 eqcom 2736 . . . . . . . . . . . . . . . . . 18 (2o = ∅ ↔ ∅ = 2o)
3331, 32bitrdi 287 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ ∅ = 2o))
3430, 33mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
35 ndmfv 6855 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
3634, 35nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3736adantl 481 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3837olcd 874 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
3923, 25, 383jaoi 1430 . . . . . . . . . . . 12 (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4015, 39sylbi 217 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4112, 40biimtrdi 253 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))))
4241imp 406 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
43 dmres 5963 . . . . . . . . . . . 12 dom (𝐴𝑋) = (𝑋 ∩ dom 𝐴)
4443elin2 4154 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
4544simplbi 497 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
46 dmres 5963 . . . . . . . . . . . 12 dom (𝐵𝑋) = (𝑋 ∩ dom 𝐵)
4746elin2 4154 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
4847simplbi 497 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
4945, 48jaoi 857 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
5042, 49syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
51 onelss 6349 . . . . . . . 8 (𝑋 ∈ On → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋))
5210, 50, 51sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋)
5352sselda 3935 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦𝑋)
54 onelon 6332 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
559, 54sylan 580 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
56 intss1 4913 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦)
57 ontri1 6341 . . . . . . . . . . . . 13 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦 ↔ ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5856, 57imbitrid 244 . . . . . . . . . . . 12 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5958con2d 134 . . . . . . . . . . 11 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
609, 59sylan 580 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6160impancom 451 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝑦 ∈ On → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6255, 61mpd 15 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})
63 fveq2 6822 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐴𝑋)‘𝑎) = ((𝐴𝑋)‘𝑦))
64 fveq2 6822 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐵𝑋)‘𝑎) = ((𝐵𝑋)‘𝑦))
6563, 64neeq12d 2986 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎) ↔ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6665elrab 3648 . . . . . . . . . 10 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ↔ (𝑦 ∈ On ∧ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6766simplbi2 500 . . . . . . . . 9 (𝑦 ∈ On → (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) → 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6867con3d 152 . . . . . . . 8 (𝑦 ∈ On → (¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6955, 62, 68sylc 65 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
70 df-ne 2926 . . . . . . . 8 (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
7170con2bii 357 . . . . . . 7 (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
7269, 71sylibr 234 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
73 fvres 6841 . . . . . . . 8 (𝑦𝑋 → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
74 fvres 6841 . . . . . . . 8 (𝑦𝑋 → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
7573, 74eqeq12d 2745 . . . . . . 7 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
7675biimpd 229 . . . . . 6 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) → (𝐴𝑦) = (𝐵𝑦)))
7753, 72, 76sylc 65 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
7877ralrimiva 3121 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦))
79 fvresval 7295 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8079ori 861 . . . . . . . . . . . . . 14 (¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8119, 80nsyl2 141 . . . . . . . . . . . . 13 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
8281eqcomd 2735 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
83 eqeq2 2741 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8482, 83mpbid 232 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8584adantr 480 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o)
8685a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o))
8721ad2antrl 728 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
8887, 45syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
89 nofun 27559 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → Fun (𝐵𝑋))
90 fvelrn 7010 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐵𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋))
9190ex 412 . . . . . . . . . . . . . . . . . 18 (Fun (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
93 norn 27561 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → ran (𝐵𝑋) ⊆ {1o, 2o})
9493sseld 3934 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
9592, 94syld 47 . . . . . . . . . . . . . . . 16 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
96 nosgnn0 27568 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ {1o, 2o}
97 eleq1 2816 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
9896, 97mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
9995, 98nsyli 157 . . . . . . . . . . . . . . 15 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
1004, 99syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
101100imp 406 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
102101adantrl 716 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
10347simplbi2 500 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
104103con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
10588, 102, 104sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵)
106 ndmfv 6855 . . . . . . . . . . 11 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
107105, 106syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
108107ex 412 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
10986, 108jcad 512 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)))
110 fvresval 7295 . . . . . . . . . . . . . 14 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
111110ori 861 . . . . . . . . . . . . 13 (¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
11234, 111nsyl2 141 . . . . . . . . . . . 12 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
113112eqcomd 2735 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
114 eqeq2 2741 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → ((𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
115113, 114mpbid 232 . . . . . . . . . 10 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
11684, 115anim12i 613 . . . . . . . . 9 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
117116a1i 11 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
11836ad2antll 729 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
119118, 48syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
120 nofun 27559 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → Fun (𝐴𝑋))
121 fvelrn 7010 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐴𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋))
122121ex 412 . . . . . . . . . . . . . . . . . 18 (Fun (𝐴𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
123120, 122syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
124 norn 27561 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → ran (𝐴𝑋) ⊆ {1o, 2o})
125124sseld 3934 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
126123, 125syld 47 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o}))
127 eleq1 2816 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
12896, 127mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1o, 2o})
129126, 128nsyli 157 . . . . . . . . . . . . . . 15 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
1302, 129syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
131130imp 406 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
132131adantrr 717 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
13344simplbi2 500 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
134133con3d 152 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
135119, 132, 134sylc 65 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴)
136135ex 412 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
137 ndmfv 6855 . . . . . . . . . 10 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
138136, 137syl6 35 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
139115adantl 481 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)
140139a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))
141138, 140jcad 512 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
142109, 117, 1413orim123d 1446 . . . . . . 7 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)) → (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o))))
143 fvex 6835 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
144 fvex 6835 . . . . . . . 8 (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
145143, 144brtp 5466 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2o)))
146142, 15, 1453imtr4g 296 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
14712, 146sylbid 240 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
148147imp 406 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
149 raleq 3286 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦)))
150 fveq2 6822 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
151 fveq2 6822 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
152150, 151breq12d 5105 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
153149, 152anbi12d 632 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))))
154153rspcev 3577 . . . 4 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
1559, 78, 148, 154syl12anc 836 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
156 sltval 27557 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
1571563adant3 1132 . . . 4 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
158157adantr 480 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
159155, 158mpbird 257 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝐴 <s 𝐵)
160159ex 412 1 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  c0 4284  {cpr 4579  {ctp 4581  cop 4583   cint 4896   class class class wbr 5092  dom cdm 5619  ran crn 5620  cres 5621  Oncon0 6307  Fun wfun 6476  cfv 6482  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553
This theorem is referenced by:  noresle  27607  nosupbnd1lem1  27618  nosupbnd1lem2  27619  nosupbnd1  27624  nosupbnd2lem1  27625  nosupbnd2  27626  noinfbnd1lem1  27633  noinfbnd1lem2  27634  noinfbnd1  27639  noinfbnd2lem1  27640  noinfbnd2  27641  noetasuplem3  27645  noetasuplem4  27646  noetainflem3  27649  noetainflem4  27650
  Copyright terms: Public domain W3C validator