| Step | Hyp | Ref
| Expression |
| 1 | | noreson 27705 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝑋 ∈
On) → (𝐴 ↾ 𝑋) ∈
No ) |
| 2 | 1 | 3adant2 1132 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (𝐴 ↾ 𝑋) ∈ No
) |
| 3 | | noreson 27705 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 𝑋 ∈
On) → (𝐵 ↾ 𝑋) ∈
No ) |
| 4 | 3 | 3adant1 1131 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (𝐵 ↾ 𝑋) ∈ No
) |
| 5 | | sltintdifex 27706 |
. . . . . . 7
⊢ (((𝐴 ↾ 𝑋) ∈ No
∧ (𝐵 ↾ 𝑋) ∈
No ) → ((𝐴
↾ 𝑋) <s (𝐵 ↾ 𝑋) → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ V)) |
| 6 | | onintrab 7816 |
. . . . . . 7
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ V ↔ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On) |
| 7 | 5, 6 | imbitrdi 251 |
. . . . . 6
⊢ (((𝐴 ↾ 𝑋) ∈ No
∧ (𝐵 ↾ 𝑋) ∈
No ) → ((𝐴
↾ 𝑋) <s (𝐵 ↾ 𝑋) → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On)) |
| 8 | 2, 4, 7 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On)) |
| 9 | 8 | imp 406 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On) |
| 10 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → 𝑋 ∈ On) |
| 11 | | sltval2 27701 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋) ∈ No
∧ (𝐵 ↾ 𝑋) ∈
No ) → ((𝐴
↾ 𝑋) <s (𝐵 ↾ 𝑋) ↔ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) |
| 12 | 2, 4, 11 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) ↔ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) |
| 13 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ V |
| 14 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ V |
| 15 | 13, 14 | brtp 5528 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ↔ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o))) |
| 16 | | 1n0 8526 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ≠ ∅ |
| 17 | 16 | neii 2942 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
1o = ∅ |
| 18 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ↔ 1o =
∅)) |
| 19 | 17, 18 | mtbiri 327 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → ¬ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 20 | | ndmfv 6941 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 21 | 19, 20 | nsyl2 141 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 23 | 22 | orcd 874 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 24 | 21 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 25 | 24 | orcd 874 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 26 | | 2on 8520 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
2o ∈ On |
| 27 | 26 | elexi 3503 |
. . . . . . . . . . . . . . . . . . . 20
⊢
2o ∈ V |
| 28 | 27 | prid2 4763 |
. . . . . . . . . . . . . . . . . . 19
⊢
2o ∈ {1o, 2o} |
| 29 | 28 | nosgnn0i 27704 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
≠ 2o |
| 30 | 29 | neii 2942 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
∅ = 2o |
| 31 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ↔ 2o =
∅)) |
| 32 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . 18
⊢
(2o = ∅ ↔ ∅ =
2o) |
| 33 | 31, 32 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ↔ ∅ =
2o)) |
| 34 | 30, 33 | mtbiri 327 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → ¬ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 35 | | ndmfv 6941 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 36 | 34, 35 | nsyl2 141 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) |
| 38 | 37 | olcd 875 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 39 | 23, 25, 38 | 3jaoi 1430 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 40 | 15, 39 | sylbi 217 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → (∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 41 | 12, 40 | biimtrdi 253 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → (∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)))) |
| 42 | 41 | imp 406 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → (∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 43 | | dmres 6030 |
. . . . . . . . . . . 12
⊢ dom
(𝐴 ↾ 𝑋) = (𝑋 ∩ dom 𝐴) |
| 44 | 43 | elin2 4203 |
. . . . . . . . . . 11
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ↔ (∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 ∧ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴)) |
| 45 | 44 | simplbi 497 |
. . . . . . . . . 10
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 46 | | dmres 6030 |
. . . . . . . . . . . 12
⊢ dom
(𝐵 ↾ 𝑋) = (𝑋 ∩ dom 𝐵) |
| 47 | 46 | elin2 4203 |
. . . . . . . . . . 11
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) ↔ (∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 ∧ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐵)) |
| 48 | 47 | simplbi 497 |
. . . . . . . . . 10
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 49 | 45, 48 | jaoi 858 |
. . . . . . . . 9
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) ∨ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) → ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 50 | 42, 49 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 51 | | onelss 6426 |
. . . . . . . 8
⊢ (𝑋 ∈ On → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ⊆ 𝑋)) |
| 52 | 10, 50, 51 | sylc 65 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ⊆ 𝑋) |
| 53 | 52 | sselda 3983 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → 𝑦 ∈ 𝑋) |
| 54 | | onelon 6409 |
. . . . . . . . 9
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → 𝑦 ∈ On) |
| 55 | 9, 54 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → 𝑦 ∈ On) |
| 56 | | intss1 4963 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ⊆ 𝑦) |
| 57 | | ontri1 6418 |
. . . . . . . . . . . . 13
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ⊆ 𝑦 ↔ ¬ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 58 | 56, 57 | imbitrid 244 |
. . . . . . . . . . . 12
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ¬ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 59 | 58 | con2d 134 |
. . . . . . . . . . 11
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 60 | 9, 59 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ On) → (𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 61 | 60 | impancom 451 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → (𝑦 ∈ On → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 62 | 55, 61 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) |
| 63 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ((𝐴 ↾ 𝑋)‘𝑎) = ((𝐴 ↾ 𝑋)‘𝑦)) |
| 64 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ((𝐵 ↾ 𝑋)‘𝑎) = ((𝐵 ↾ 𝑋)‘𝑦)) |
| 65 | 63, 64 | neeq12d 3002 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎) ↔ ((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦))) |
| 66 | 65 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ↔ (𝑦 ∈ On ∧ ((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦))) |
| 67 | 66 | simplbi2 500 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → (((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦) → 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 68 | 67 | con3d 152 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ¬ ((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦))) |
| 69 | 55, 62, 68 | sylc 65 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → ¬ ((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦)) |
| 70 | | df-ne 2941 |
. . . . . . . 8
⊢ (((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦) ↔ ¬ ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
| 71 | 70 | con2bii 357 |
. . . . . . 7
⊢ (((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦) ↔ ¬ ((𝐴 ↾ 𝑋)‘𝑦) ≠ ((𝐵 ↾ 𝑋)‘𝑦)) |
| 72 | 69, 71 | sylibr 234 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
| 73 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((𝐴 ↾ 𝑋)‘𝑦) = (𝐴‘𝑦)) |
| 74 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((𝐵 ↾ 𝑋)‘𝑦) = (𝐵‘𝑦)) |
| 75 | 73, 74 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 → (((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦) ↔ (𝐴‘𝑦) = (𝐵‘𝑦))) |
| 76 | 75 | biimpd 229 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 → (((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦) → (𝐴‘𝑦) = (𝐵‘𝑦))) |
| 77 | 53, 72, 76 | sylc 65 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → (𝐴‘𝑦) = (𝐵‘𝑦)) |
| 78 | 77 | ralrimiva 3146 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → ∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} (𝐴‘𝑦) = (𝐵‘𝑦)) |
| 79 | | fvresval 7378 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∨ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 80 | 79 | ori 862 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝐴 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 81 | 19, 80 | nsyl2 141 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 82 | 81 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 83 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → ((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ↔ (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o)) |
| 84 | 82, 83 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o) |
| 85 | 84 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o) |
| 86 | 85 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o)) |
| 87 | 21 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 88 | 87, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 89 | | nofun 27694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ Fun (𝐵 ↾ 𝑋)) |
| 90 | | fvelrn 7096 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
(𝐵 ↾ 𝑋) ∧ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐵 ↾ 𝑋)) |
| 91 | 90 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
(𝐵 ↾ 𝑋) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐵 ↾ 𝑋))) |
| 92 | 89, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐵 ↾ 𝑋))) |
| 93 | | norn 27696 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ ran (𝐵 ↾ 𝑋) ⊆ {1o,
2o}) |
| 94 | 93 | sseld 3982 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ (((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o})) |
| 95 | 92, 94 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o})) |
| 96 | | nosgnn0 27703 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
∅ ∈ {1o, 2o} |
| 97 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o, 2o}
↔ ∅ ∈ {1o, 2o})) |
| 98 | 96, 97 | mtbiri 327 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o}) |
| 99 | 95, 98 | nsyli 157 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ↾ 𝑋) ∈ No
→ (((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 100 | 4, 99 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 101 | 100 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) |
| 102 | 101 | adantrl 716 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) |
| 103 | 47 | simplbi2 500 |
. . . . . . . . . . . . 13
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 → (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐵 → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋))) |
| 104 | 103 | con3d 152 |
. . . . . . . . . . . 12
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 → (¬ ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋) → ¬ ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐵)) |
| 105 | 88, 102, 104 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐵) |
| 106 | | ndmfv 6941 |
. . . . . . . . . . 11
⊢ (¬
∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐵 → (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) → (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 108 | 107 | ex 412 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) |
| 109 | 86, 108 | jcad 512 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → ((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅))) |
| 110 | | fvresval 7378 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∨ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 111 | 110 | ori 862 |
. . . . . . . . . . . . 13
⊢ (¬
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 112 | 34, 111 | nsyl2 141 |
. . . . . . . . . . . 12
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 113 | 112 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 114 | | eqeq2 2749 |
. . . . . . . . . . 11
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → ((𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ↔ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) |
| 115 | 113, 114 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o → (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) |
| 116 | 84, 115 | anim12i 613 |
. . . . . . . . 9
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) |
| 117 | 116 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o))) |
| 118 | 36 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐵 ↾ 𝑋)) |
| 119 | 118, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋) |
| 120 | | nofun 27694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ Fun (𝐴 ↾ 𝑋)) |
| 121 | | fvelrn 7096 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
(𝐴 ↾ 𝑋) ∧ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐴 ↾ 𝑋)) |
| 122 | 121 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
(𝐴 ↾ 𝑋) → (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐴 ↾ 𝑋))) |
| 123 | 120, 122 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐴 ↾ 𝑋))) |
| 124 | | norn 27696 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ ran (𝐴 ↾ 𝑋) ⊆ {1o,
2o}) |
| 125 | 124 | sseld 3982 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ (((𝐴 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ ran (𝐴 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o})) |
| 126 | 123, 125 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o})) |
| 127 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o, 2o}
↔ ∅ ∈ {1o, 2o})) |
| 128 | 96, 127 | mtbiri 327 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ {1o,
2o}) |
| 129 | 126, 128 | nsyli 157 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ↾ 𝑋) ∈ No
→ (((𝐴 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋))) |
| 130 | 2, 129 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋))) |
| 131 | 130 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 132 | 131 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋)) |
| 133 | 44 | simplbi2 500 |
. . . . . . . . . . . . 13
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 → (∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴 → ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋))) |
| 134 | 133 | con3d 152 |
. . . . . . . . . . . 12
⊢ (∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ 𝑋 → (¬ ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom (𝐴 ↾ 𝑋) → ¬ ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴)) |
| 135 | 119, 132,
134 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴) |
| 136 | 135 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ¬ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴)) |
| 137 | | ndmfv 6941 |
. . . . . . . . . 10
⊢ (¬
∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ dom 𝐴 → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) |
| 138 | 136, 137 | syl6 35 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → (𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅)) |
| 139 | 115 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → (𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) |
| 140 | 139 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → (𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) |
| 141 | 138, 140 | jcad 512 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) → ((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o))) |
| 142 | 109, 117,
141 | 3orim123d 1446 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (((((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) ∨ (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ ((𝐵 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)) → (((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o)))) |
| 143 | | fvex 6919 |
. . . . . . . 8
⊢ (𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ V |
| 144 | | fvex 6919 |
. . . . . . . 8
⊢ (𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ∈ V |
| 145 | 143, 144 | brtp 5528 |
. . . . . . 7
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) ↔ (((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) = 2o))) |
| 146 | 142, 15, 145 | 3imtr4g 296 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (((𝐴 ↾ 𝑋)‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐵 ↾ 𝑋)‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}) → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) |
| 147 | 12, 146 | sylbid 240 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) |
| 148 | 147 | imp 406 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 149 | | raleq 3323 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ↔ ∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} (𝐴‘𝑦) = (𝐵‘𝑦))) |
| 150 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → (𝐴‘𝑥) = (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 151 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → (𝐵‘𝑥) = (𝐵‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})) |
| 152 | 150, 151 | breq12d 5156 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ((𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥) ↔ (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) |
| 153 | 149, 152 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣
((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} → ((∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)) ↔ (∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)})))) |
| 154 | 153 | rspcev 3622 |
. . . 4
⊢ ((∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} ∈ On ∧ (∀𝑦 ∈ ∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)} (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘∩ {𝑎 ∈ On ∣ ((𝐴 ↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ ((𝐴
↾ 𝑋)‘𝑎) ≠ ((𝐵 ↾ 𝑋)‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
| 155 | 9, 78, 148, 154 | syl12anc 837 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
| 156 | | sltval 27692 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
| 157 | 156 | 3adant3 1133 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
| 158 | 157 | adantr 480 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
| 159 | 155, 158 | mpbird 257 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ (𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋)) → 𝐴 <s 𝐵) |
| 160 | 159 | ex 412 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → 𝐴 <s 𝐵)) |