MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano3 Structured version   Visualization version   GIF version

Theorem peano3 7234
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0 5948 . 2 suc 𝐴 ≠ ∅
21a1i 11 1 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145  wne 2943  c0 4063  suc csuc 5868  ωcom 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-v 3353  df-dif 3726  df-un 3728  df-nul 4064  df-sn 4317  df-suc 5872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator