MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano3 Structured version   Visualization version   GIF version

Theorem peano3 7914
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0 6469 . 2 suc 𝐴 ≠ ∅
21a1i 11 1 (𝐴 ∈ ω → suc 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2938  c0 4339  suc csuc 6388  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator