![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano3 | Structured version Visualization version GIF version |
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano3 | ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6444 | . 2 ⊢ suc 𝐴 ≠ ∅ | |
2 | 1 | a1i 11 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2941 ∅c0 4321 suc csuc 6363 ωcom 7850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-suc 6367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |