Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2b 7738 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 suc csuc 6272 ωcom 7721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-tr 5193 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-om 7722 |
This theorem is referenced by: onnseq 8184 seqomlem1 8290 seqomlem4 8293 onasuc 8367 onmsuc 8368 onesuc 8369 o2p2e4 8380 nnacl 8451 nnecl 8453 nnacom 8457 nnmsucr 8465 1onnALT 8480 2onnALT 8482 3onn 8483 4onn 8484 nnneo 8494 nneob 8495 omopthlem1 8498 eldifsucnn 8503 findcard 8955 unfi 8964 phplem1 8999 php 9002 onomeneqOLD 9021 dif1enALT 9059 findcard2OLD 9065 unbnn2 9080 dffi3 9199 wofib 9313 axinf2 9407 dfom3 9414 noinfep 9427 cantnflt 9439 ttrcltr 9483 ttrclss 9487 ttrclselem2 9493 trcl 9495 cardsucnn 9752 harsucnn 9765 dif1card 9775 fseqdom 9791 alephfp 9873 ackbij1lem5 9989 ackbij1lem16 10000 ackbij2lem2 10005 ackbij2lem3 10006 ackbij2 10008 sornom 10042 infpssrlem4 10071 fin23lem26 10090 fin23lem20 10102 fin23lem38 10114 fin23lem39 10115 isf32lem2 10119 isf32lem3 10120 isf34lem7 10144 isf34lem6 10145 fin1a2lem6 10170 fin1a2lem9 10173 fin1a2lem12 10176 domtriomlem 10207 axdc2lem 10213 axdc3lem 10215 axdc3lem2 10216 axdc3lem4 10218 axdc4lem 10220 axdclem2 10285 peano2nn 11994 om2uzrani 13681 uzrdgsuci 13689 fzennn 13697 axdc4uzlem 13712 bnj970 32936 satfvsuc 33332 satfvsucsuc 33336 gonarlem 33365 goalrlem 33367 satffunlem2lem2 33377 satffunlem2 33379 ex-sategoelelomsuc 33397 elhf2 34486 0hf 34488 hfsn 34490 hfpw 34496 neibastop2lem 34558 exrecfnlem 35559 finxpsuclem 35577 domalom 35584 nna1iscard 41159 |
Copyright terms: Public domain | W3C validator |