| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7808 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 suc csuc 6303 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-om 7792 |
| This theorem is referenced by: onnseq 8259 seqomlem1 8364 seqomlem4 8367 onasuc 8438 onmsuc 8439 onesuc 8440 o2p2e4 8451 nnacl 8521 nnecl 8523 nnacom 8527 nnmsucr 8535 nnaordex2 8549 1onnALT 8551 2onnALT 8553 3onn 8554 4onn 8555 nnneo 8565 nneob 8566 omopthlem1 8569 eldifsucnn 8574 findcard 9068 unfi 9075 phplem1 9108 php 9111 dif1ennnALT 9156 unbnn2 9176 dffi3 9310 wofib 9426 axinf2 9525 dfom3 9532 noinfep 9545 cantnflt 9557 ttrcltr 9601 ttrclss 9605 ttrclselem2 9611 trcl 9613 cardsucnn 9873 harsucnn 9886 dif1card 9896 fseqdom 9912 alephfp 9994 ackbij1lem5 10109 ackbij1lem16 10120 ackbij2lem2 10125 ackbij2lem3 10126 ackbij2 10128 sornom 10163 infpssrlem4 10192 fin23lem26 10211 fin23lem20 10223 fin23lem38 10235 fin23lem39 10236 isf32lem2 10240 isf32lem3 10241 isf34lem7 10265 isf34lem6 10266 fin1a2lem6 10291 fin1a2lem9 10294 fin1a2lem12 10297 domtriomlem 10328 axdc2lem 10334 axdc3lem 10336 axdc3lem2 10337 axdc3lem4 10339 axdc4lem 10341 axdclem2 10406 peano2nn 12132 om2uzrani 13854 uzrdgsuci 13862 fzennn 13870 axdc4uzlem 13885 precsexlem4 28143 precsexlem5 28144 precsexlem11 28150 noseqp1 28216 om2noseqlt 28224 noseqrdgsuc 28233 n0sbday 28275 dfnns2 28292 zs12bday 28389 constrextdg2lem 33753 bnj970 34951 fineqvnttrclselem3 35135 satfvsuc 35397 satfvsucsuc 35401 gonarlem 35430 goalrlem 35432 satffunlem2lem2 35442 satffunlem2 35444 ex-sategoelelomsuc 35462 elhf2 36209 0hf 36211 hfsn 36213 hfpw 36219 neibastop2lem 36394 exrecfnlem 37413 finxpsuclem 37431 domalom 37438 onexoegt 43277 nnoeomeqom 43345 nna1iscard 43578 orbitcl 44990 omssaxinf2 45021 |
| Copyright terms: Public domain | W3C validator |