Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2b 7704 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: onnseq 8146 seqomlem1 8251 seqomlem4 8254 onasuc 8320 onmsuc 8321 onesuc 8322 o2p2e4 8333 nnacl 8404 nnecl 8406 nnacom 8410 nnmsucr 8418 1onn 8432 2onn 8433 3onn 8434 4onn 8435 nnneo 8445 nneob 8446 omopthlem1 8449 findcard 8908 unfi 8917 onomeneq 8943 dif1enALT 8980 findcard2OLD 8986 unbnn2 9001 dffi3 9120 wofib 9234 axinf2 9328 dfom3 9335 noinfep 9348 cantnflt 9360 trpredtr 9408 trcl 9417 cardsucnn 9674 harsucnn 9687 dif1card 9697 fseqdom 9713 alephfp 9795 ackbij1lem5 9911 ackbij1lem16 9922 ackbij2lem2 9927 ackbij2lem3 9928 ackbij2 9930 sornom 9964 infpssrlem4 9993 fin23lem26 10012 fin23lem20 10024 fin23lem38 10036 fin23lem39 10037 isf32lem2 10041 isf32lem3 10042 isf34lem7 10066 isf34lem6 10067 fin1a2lem6 10092 fin1a2lem9 10095 fin1a2lem12 10098 domtriomlem 10129 axdc2lem 10135 axdc3lem 10137 axdc3lem2 10138 axdc3lem4 10140 axdc4lem 10142 axdclem2 10207 peano2nn 11915 om2uzrani 13600 uzrdgsuci 13608 fzennn 13616 axdc4uzlem 13631 bnj970 32827 satfvsuc 33223 satfvsucsuc 33227 gonarlem 33256 goalrlem 33258 satffunlem2lem2 33268 satffunlem2 33270 ex-sategoelelomsuc 33288 eldifsucnn 33597 ttrcltr 33702 ttrclss 33706 ttrclselem2 33712 elhf2 34404 0hf 34406 hfsn 34408 hfpw 34414 neibastop2lem 34476 exrecfnlem 35477 finxpsuclem 35495 domalom 35502 |
Copyright terms: Public domain | W3C validator |