| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7823 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 suc csuc 6313 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 |
| This theorem is referenced by: onnseq 8274 seqomlem1 8379 seqomlem4 8382 onasuc 8453 onmsuc 8454 onesuc 8455 o2p2e4 8466 nnacl 8536 nnecl 8538 nnacom 8542 nnmsucr 8550 nnaordex2 8564 1onnALT 8566 2onnALT 8568 3onn 8569 4onn 8570 nnneo 8580 nneob 8581 omopthlem1 8584 eldifsucnn 8589 findcard 9087 unfi 9095 phplem1 9128 php 9131 dif1ennnALT 9180 unbnn2 9202 dffi3 9340 wofib 9456 axinf2 9555 dfom3 9562 noinfep 9575 cantnflt 9587 ttrcltr 9631 ttrclss 9635 ttrclselem2 9641 trcl 9643 cardsucnn 9900 harsucnn 9913 dif1card 9923 fseqdom 9939 alephfp 10021 ackbij1lem5 10136 ackbij1lem16 10147 ackbij2lem2 10152 ackbij2lem3 10153 ackbij2 10155 sornom 10190 infpssrlem4 10219 fin23lem26 10238 fin23lem20 10250 fin23lem38 10262 fin23lem39 10263 isf32lem2 10267 isf32lem3 10268 isf34lem7 10292 isf34lem6 10293 fin1a2lem6 10318 fin1a2lem9 10321 fin1a2lem12 10324 domtriomlem 10355 axdc2lem 10361 axdc3lem 10363 axdc3lem2 10364 axdc3lem4 10366 axdc4lem 10368 axdclem2 10433 peano2nn 12158 om2uzrani 13877 uzrdgsuci 13885 fzennn 13893 axdc4uzlem 13908 precsexlem4 28135 precsexlem5 28136 precsexlem11 28142 noseqp1 28208 om2noseqlt 28216 noseqrdgsuc 28225 n0sbday 28267 dfnns2 28284 zs12bday 28379 constrextdg2lem 33717 bnj970 34916 satfvsuc 35336 satfvsucsuc 35340 gonarlem 35369 goalrlem 35371 satffunlem2lem2 35381 satffunlem2 35383 ex-sategoelelomsuc 35401 elhf2 36151 0hf 36153 hfsn 36155 hfpw 36161 neibastop2lem 36336 exrecfnlem 37355 finxpsuclem 37373 domalom 37380 onexoegt 43220 nnoeomeqom 43288 nna1iscard 43521 orbitcl 44934 omssaxinf2 44965 |
| Copyright terms: Public domain | W3C validator |