| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7822 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 suc csuc 6316 ωcom 7805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-om 7806 |
| This theorem is referenced by: onnseq 8273 seqomlem1 8378 seqomlem4 8381 onasuc 8452 onmsuc 8453 onesuc 8454 o2p2e4 8465 nnacl 8535 nnecl 8537 nnacom 8541 nnmsucr 8549 nnaordex2 8563 1onnALT 8565 2onnALT 8567 3onn 8568 4onn 8569 nnneo 8579 nneob 8580 omopthlem1 8583 eldifsucnn 8588 findcard 9084 unfi 9091 phplem1 9124 php 9127 dif1ennnALT 9172 unbnn2 9192 dffi3 9326 wofib 9442 axinf2 9541 dfom3 9548 noinfep 9561 cantnflt 9573 ttrcltr 9617 ttrclss 9621 ttrclselem2 9627 trcl 9629 cardsucnn 9889 harsucnn 9902 dif1card 9912 fseqdom 9928 alephfp 10010 ackbij1lem5 10125 ackbij1lem16 10136 ackbij2lem2 10141 ackbij2lem3 10142 ackbij2 10144 sornom 10179 infpssrlem4 10208 fin23lem26 10227 fin23lem20 10239 fin23lem38 10251 fin23lem39 10252 isf32lem2 10256 isf32lem3 10257 isf34lem7 10281 isf34lem6 10282 fin1a2lem6 10307 fin1a2lem9 10310 fin1a2lem12 10313 domtriomlem 10344 axdc2lem 10350 axdc3lem 10352 axdc3lem2 10353 axdc3lem4 10355 axdc4lem 10357 axdclem2 10422 peano2nn 12148 om2uzrani 13866 uzrdgsuci 13874 fzennn 13882 axdc4uzlem 13897 precsexlem4 28168 precsexlem5 28169 precsexlem11 28175 noseqp1 28241 om2noseqlt 28249 noseqrdgsuc 28258 n0sbday 28300 dfnns2 28317 zs12bday 28414 constrextdg2lem 33833 bnj970 35031 fineqvnttrclselem3 35215 satfvsuc 35477 satfvsucsuc 35481 gonarlem 35510 goalrlem 35512 satffunlem2lem2 35522 satffunlem2 35524 ex-sategoelelomsuc 35542 elhf2 36291 0hf 36293 hfsn 36295 hfpw 36301 neibastop2lem 36476 exrecfnlem 37496 finxpsuclem 37514 domalom 37521 onexoegt 43401 nnoeomeqom 43469 nna1iscard 43702 orbitcl 45114 omssaxinf2 45145 |
| Copyright terms: Public domain | W3C validator |