| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7878 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 suc csuc 6354 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7862 |
| This theorem is referenced by: onnseq 8358 seqomlem1 8464 seqomlem4 8467 onasuc 8540 onmsuc 8541 onesuc 8542 o2p2e4 8553 nnacl 8623 nnecl 8625 nnacom 8629 nnmsucr 8637 nnaordex2 8651 1onnALT 8653 2onnALT 8655 3onn 8656 4onn 8657 nnneo 8667 nneob 8668 omopthlem1 8671 eldifsucnn 8676 findcard 9177 unfi 9185 phplem1 9218 php 9221 onomeneqOLD 9238 dif1ennnALT 9283 unbnn2 9305 dffi3 9443 wofib 9559 axinf2 9654 dfom3 9661 noinfep 9674 cantnflt 9686 ttrcltr 9730 ttrclss 9734 ttrclselem2 9740 trcl 9742 cardsucnn 9999 harsucnn 10012 dif1card 10024 fseqdom 10040 alephfp 10122 ackbij1lem5 10237 ackbij1lem16 10248 ackbij2lem2 10253 ackbij2lem3 10254 ackbij2 10256 sornom 10291 infpssrlem4 10320 fin23lem26 10339 fin23lem20 10351 fin23lem38 10363 fin23lem39 10364 isf32lem2 10368 isf32lem3 10369 isf34lem7 10393 isf34lem6 10394 fin1a2lem6 10419 fin1a2lem9 10422 fin1a2lem12 10425 domtriomlem 10456 axdc2lem 10462 axdc3lem 10464 axdc3lem2 10465 axdc3lem4 10467 axdc4lem 10469 axdclem2 10534 peano2nn 12252 om2uzrani 13970 uzrdgsuci 13978 fzennn 13986 axdc4uzlem 14001 precsexlem4 28164 precsexlem5 28165 precsexlem11 28171 noseqp1 28237 om2noseqlt 28245 noseqrdgsuc 28254 n0sbday 28296 dfnns2 28313 zs12bday 28395 constrextdg2lem 33782 bnj970 34978 satfvsuc 35383 satfvsucsuc 35387 gonarlem 35416 goalrlem 35418 satffunlem2lem2 35428 satffunlem2 35430 ex-sategoelelomsuc 35448 elhf2 36193 0hf 36195 hfsn 36197 hfpw 36203 neibastop2lem 36378 exrecfnlem 37397 finxpsuclem 37415 domalom 37422 onexoegt 43268 nnoeomeqom 43336 nna1iscard 43569 orbitcl 44982 omssaxinf2 45013 |
| Copyright terms: Public domain | W3C validator |