| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7839 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 suc csuc 6322 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-om 7823 |
| This theorem is referenced by: onnseq 8290 seqomlem1 8395 seqomlem4 8398 onasuc 8469 onmsuc 8470 onesuc 8471 o2p2e4 8482 nnacl 8552 nnecl 8554 nnacom 8558 nnmsucr 8566 nnaordex2 8580 1onnALT 8582 2onnALT 8584 3onn 8585 4onn 8586 nnneo 8596 nneob 8597 omopthlem1 8600 eldifsucnn 8605 findcard 9104 unfi 9112 phplem1 9145 php 9148 dif1ennnALT 9198 unbnn2 9220 dffi3 9358 wofib 9474 axinf2 9569 dfom3 9576 noinfep 9589 cantnflt 9601 ttrcltr 9645 ttrclss 9649 ttrclselem2 9655 trcl 9657 cardsucnn 9914 harsucnn 9927 dif1card 9939 fseqdom 9955 alephfp 10037 ackbij1lem5 10152 ackbij1lem16 10163 ackbij2lem2 10168 ackbij2lem3 10169 ackbij2 10171 sornom 10206 infpssrlem4 10235 fin23lem26 10254 fin23lem20 10266 fin23lem38 10278 fin23lem39 10279 isf32lem2 10283 isf32lem3 10284 isf34lem7 10308 isf34lem6 10309 fin1a2lem6 10334 fin1a2lem9 10337 fin1a2lem12 10340 domtriomlem 10371 axdc2lem 10377 axdc3lem 10379 axdc3lem2 10380 axdc3lem4 10382 axdc4lem 10384 axdclem2 10449 peano2nn 12174 om2uzrani 13893 uzrdgsuci 13901 fzennn 13909 axdc4uzlem 13924 precsexlem4 28088 precsexlem5 28089 precsexlem11 28095 noseqp1 28161 om2noseqlt 28169 noseqrdgsuc 28178 n0sbday 28220 dfnns2 28237 zs12bday 28319 constrextdg2lem 33711 bnj970 34910 satfvsuc 35321 satfvsucsuc 35325 gonarlem 35354 goalrlem 35356 satffunlem2lem2 35366 satffunlem2 35368 ex-sategoelelomsuc 35386 elhf2 36136 0hf 36138 hfsn 36140 hfpw 36146 neibastop2lem 36321 exrecfnlem 37340 finxpsuclem 37358 domalom 37365 onexoegt 43206 nnoeomeqom 43274 nna1iscard 43507 orbitcl 44920 omssaxinf2 44951 |
| Copyright terms: Public domain | W3C validator |