| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7862 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 suc csuc 6337 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 |
| This theorem is referenced by: onnseq 8316 seqomlem1 8421 seqomlem4 8424 onasuc 8495 onmsuc 8496 onesuc 8497 o2p2e4 8508 nnacl 8578 nnecl 8580 nnacom 8584 nnmsucr 8592 nnaordex2 8606 1onnALT 8608 2onnALT 8610 3onn 8611 4onn 8612 nnneo 8622 nneob 8623 omopthlem1 8626 eldifsucnn 8631 findcard 9133 unfi 9141 phplem1 9174 php 9177 dif1ennnALT 9229 unbnn2 9251 dffi3 9389 wofib 9505 axinf2 9600 dfom3 9607 noinfep 9620 cantnflt 9632 ttrcltr 9676 ttrclss 9680 ttrclselem2 9686 trcl 9688 cardsucnn 9945 harsucnn 9958 dif1card 9970 fseqdom 9986 alephfp 10068 ackbij1lem5 10183 ackbij1lem16 10194 ackbij2lem2 10199 ackbij2lem3 10200 ackbij2 10202 sornom 10237 infpssrlem4 10266 fin23lem26 10285 fin23lem20 10297 fin23lem38 10309 fin23lem39 10310 isf32lem2 10314 isf32lem3 10315 isf34lem7 10339 isf34lem6 10340 fin1a2lem6 10365 fin1a2lem9 10368 fin1a2lem12 10371 domtriomlem 10402 axdc2lem 10408 axdc3lem 10410 axdc3lem2 10411 axdc3lem4 10413 axdc4lem 10415 axdclem2 10480 peano2nn 12205 om2uzrani 13924 uzrdgsuci 13932 fzennn 13940 axdc4uzlem 13955 precsexlem4 28119 precsexlem5 28120 precsexlem11 28126 noseqp1 28192 om2noseqlt 28200 noseqrdgsuc 28209 n0sbday 28251 dfnns2 28268 zs12bday 28350 constrextdg2lem 33745 bnj970 34944 satfvsuc 35355 satfvsucsuc 35359 gonarlem 35388 goalrlem 35390 satffunlem2lem2 35400 satffunlem2 35402 ex-sategoelelomsuc 35420 elhf2 36170 0hf 36172 hfsn 36174 hfpw 36180 neibastop2lem 36355 exrecfnlem 37374 finxpsuclem 37392 domalom 37399 onexoegt 43240 nnoeomeqom 43308 nna1iscard 43541 orbitcl 44954 omssaxinf2 44985 |
| Copyright terms: Public domain | W3C validator |