| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2b 7859 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 suc csuc 6334 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: onnseq 8313 seqomlem1 8418 seqomlem4 8421 onasuc 8492 onmsuc 8493 onesuc 8494 o2p2e4 8505 nnacl 8575 nnecl 8577 nnacom 8581 nnmsucr 8589 nnaordex2 8603 1onnALT 8605 2onnALT 8607 3onn 8608 4onn 8609 nnneo 8619 nneob 8620 omopthlem1 8623 eldifsucnn 8628 findcard 9127 unfi 9135 phplem1 9168 php 9171 dif1ennnALT 9222 unbnn2 9244 dffi3 9382 wofib 9498 axinf2 9593 dfom3 9600 noinfep 9613 cantnflt 9625 ttrcltr 9669 ttrclss 9673 ttrclselem2 9679 trcl 9681 cardsucnn 9938 harsucnn 9951 dif1card 9963 fseqdom 9979 alephfp 10061 ackbij1lem5 10176 ackbij1lem16 10187 ackbij2lem2 10192 ackbij2lem3 10193 ackbij2 10195 sornom 10230 infpssrlem4 10259 fin23lem26 10278 fin23lem20 10290 fin23lem38 10302 fin23lem39 10303 isf32lem2 10307 isf32lem3 10308 isf34lem7 10332 isf34lem6 10333 fin1a2lem6 10358 fin1a2lem9 10361 fin1a2lem12 10364 domtriomlem 10395 axdc2lem 10401 axdc3lem 10403 axdc3lem2 10404 axdc3lem4 10406 axdc4lem 10408 axdclem2 10473 peano2nn 12198 om2uzrani 13917 uzrdgsuci 13925 fzennn 13933 axdc4uzlem 13948 precsexlem4 28112 precsexlem5 28113 precsexlem11 28119 noseqp1 28185 om2noseqlt 28193 noseqrdgsuc 28202 n0sbday 28244 dfnns2 28261 zs12bday 28343 constrextdg2lem 33738 bnj970 34937 satfvsuc 35348 satfvsucsuc 35352 gonarlem 35381 goalrlem 35383 satffunlem2lem2 35393 satffunlem2 35395 ex-sategoelelomsuc 35413 elhf2 36163 0hf 36165 hfsn 36167 hfpw 36173 neibastop2lem 36348 exrecfnlem 37367 finxpsuclem 37385 domalom 37392 onexoegt 43233 nnoeomeqom 43301 nna1iscard 43534 orbitcl 44947 omssaxinf2 44978 |
| Copyright terms: Public domain | W3C validator |