![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2b 7920 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 suc csuc 6397 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 |
This theorem is referenced by: onnseq 8400 seqomlem1 8506 seqomlem4 8509 onasuc 8584 onmsuc 8585 onesuc 8586 o2p2e4 8597 nnacl 8667 nnecl 8669 nnacom 8673 nnmsucr 8681 nnaordex2 8695 1onnALT 8697 2onnALT 8699 3onn 8700 4onn 8701 nnneo 8711 nneob 8712 omopthlem1 8715 eldifsucnn 8720 findcard 9229 unfi 9238 phplem1 9270 php 9273 onomeneqOLD 9292 dif1ennnALT 9339 unbnn2 9361 dffi3 9500 wofib 9614 axinf2 9709 dfom3 9716 noinfep 9729 cantnflt 9741 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 trcl 9797 cardsucnn 10054 harsucnn 10067 dif1card 10079 fseqdom 10095 alephfp 10177 ackbij1lem5 10292 ackbij1lem16 10303 ackbij2lem2 10308 ackbij2lem3 10309 ackbij2 10311 sornom 10346 infpssrlem4 10375 fin23lem26 10394 fin23lem20 10406 fin23lem38 10418 fin23lem39 10419 isf32lem2 10423 isf32lem3 10424 isf34lem7 10448 isf34lem6 10449 fin1a2lem6 10474 fin1a2lem9 10477 fin1a2lem12 10480 domtriomlem 10511 axdc2lem 10517 axdc3lem 10519 axdc3lem2 10520 axdc3lem4 10522 axdc4lem 10524 axdclem2 10589 peano2nn 12305 om2uzrani 14003 uzrdgsuci 14011 fzennn 14019 axdc4uzlem 14034 precsexlem4 28252 precsexlem5 28253 precsexlem11 28259 noseqp1 28315 om2noseqlt 28323 noseqrdgsuc 28332 n0sbday 28372 dfnns2 28380 pw2bday 28436 zs12bday 28442 bnj970 34923 satfvsuc 35329 satfvsucsuc 35333 gonarlem 35362 goalrlem 35364 satffunlem2lem2 35374 satffunlem2 35376 ex-sategoelelomsuc 35394 elhf2 36139 0hf 36141 hfsn 36143 hfpw 36149 neibastop2lem 36326 exrecfnlem 37345 finxpsuclem 37363 domalom 37370 onexoegt 43205 nnoeomeqom 43274 nna1iscard 43507 |
Copyright terms: Public domain | W3C validator |