![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2 | Structured version Visualization version GIF version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2b 7904 | . 2 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 suc csuc 6388 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: onnseq 8383 seqomlem1 8489 seqomlem4 8492 onasuc 8565 onmsuc 8566 onesuc 8567 o2p2e4 8578 nnacl 8648 nnecl 8650 nnacom 8654 nnmsucr 8662 nnaordex2 8676 1onnALT 8678 2onnALT 8680 3onn 8681 4onn 8682 nnneo 8692 nneob 8693 omopthlem1 8696 eldifsucnn 8701 findcard 9202 unfi 9210 phplem1 9242 php 9245 onomeneqOLD 9264 dif1ennnALT 9309 unbnn2 9331 dffi3 9469 wofib 9583 axinf2 9678 dfom3 9685 noinfep 9698 cantnflt 9710 ttrcltr 9754 ttrclss 9758 ttrclselem2 9764 trcl 9766 cardsucnn 10023 harsucnn 10036 dif1card 10048 fseqdom 10064 alephfp 10146 ackbij1lem5 10261 ackbij1lem16 10272 ackbij2lem2 10277 ackbij2lem3 10278 ackbij2 10280 sornom 10315 infpssrlem4 10344 fin23lem26 10363 fin23lem20 10375 fin23lem38 10387 fin23lem39 10388 isf32lem2 10392 isf32lem3 10393 isf34lem7 10417 isf34lem6 10418 fin1a2lem6 10443 fin1a2lem9 10446 fin1a2lem12 10449 domtriomlem 10480 axdc2lem 10486 axdc3lem 10488 axdc3lem2 10489 axdc3lem4 10491 axdc4lem 10493 axdclem2 10558 peano2nn 12276 om2uzrani 13990 uzrdgsuci 13998 fzennn 14006 axdc4uzlem 14021 precsexlem4 28249 precsexlem5 28250 precsexlem11 28256 noseqp1 28312 om2noseqlt 28320 noseqrdgsuc 28329 n0sbday 28369 dfnns2 28377 pw2bday 28433 zs12bday 28439 bnj970 34940 satfvsuc 35346 satfvsucsuc 35350 gonarlem 35379 goalrlem 35381 satffunlem2lem2 35391 satffunlem2 35393 ex-sategoelelomsuc 35411 elhf2 36157 0hf 36159 hfsn 36161 hfpw 36167 neibastop2lem 36343 exrecfnlem 37362 finxpsuclem 37380 domalom 37387 onexoegt 43233 nnoeomeqom 43302 nna1iscard 43535 |
Copyright terms: Public domain | W3C validator |