![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano4 | Structured version Visualization version GIF version |
Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano4 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7900 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | nnon 7900 | . 2 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
3 | suc11 6499 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Oncon0 6392 suc csuc 6394 ωcom 7894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 df-suc 6398 df-om 7895 |
This theorem is referenced by: dif1ennnALT 9318 fseqdom 10073 finxpreclem4 37389 |
Copyright terms: Public domain | W3C validator |