Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano4 Structured version   Visualization version   GIF version

Theorem peano4 7588
 Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem peano4
StepHypRef Expression
1 nnon 7570 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
2 nnon 7570 . 2 (𝐵 ∈ ω → 𝐵 ∈ On)
3 suc11 6266 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
41, 2, 3syl2an 598 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Oncon0 6163  suc csuc 6165  ωcom 7564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-om 7565 This theorem is referenced by:  dif1en  8739  fseqdom  9441  finxpreclem4  34812
 Copyright terms: Public domain W3C validator