| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pion | Structured version Visualization version GIF version | ||
| Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pion | ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10897 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | nnon 7872 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Oncon0 6357 ωcom 7866 Ncnpi 10863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-om 7867 df-ni 10891 |
| This theorem is referenced by: indpi 10926 nqereu 10948 |
| Copyright terms: Public domain | W3C validator |