Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pion | Structured version Visualization version GIF version |
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pion | ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10565 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | nnon 7693 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Oncon0 6251 ωcom 7687 Ncnpi 10531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-om 7688 df-ni 10559 |
This theorem is referenced by: indpi 10594 nqereu 10616 |
Copyright terms: Public domain | W3C validator |