MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pion Structured version   Visualization version   GIF version

Theorem pion 10566
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pion (𝐴N𝐴 ∈ On)

Proof of Theorem pion
StepHypRef Expression
1 pinn 10565 . 2 (𝐴N𝐴 ∈ ω)
2 nnon 7693 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 17 1 (𝐴N𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Oncon0 6251  ωcom 7687  Ncnpi 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-om 7688  df-ni 10559
This theorem is referenced by:  indpi  10594  nqereu  10616
  Copyright terms: Public domain W3C validator