MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pion Structured version   Visualization version   GIF version

Theorem pion 10876
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pion (𝐴N𝐴 ∈ On)

Proof of Theorem pion
StepHypRef Expression
1 pinn 10875 . 2 (𝐴N𝐴 ∈ ω)
2 nnon 7863 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 17 1 (𝐴N𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Oncon0 6363  ωcom 7857  Ncnpi 10841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964  df-om 7858  df-ni 10869
This theorem is referenced by:  indpi  10904  nqereu  10926
  Copyright terms: Public domain W3C validator