Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pion | Structured version Visualization version GIF version |
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pion | ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10634 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | nnon 7718 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Oncon0 6266 ωcom 7712 Ncnpi 10600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-om 7713 df-ni 10628 |
This theorem is referenced by: indpi 10663 nqereu 10685 |
Copyright terms: Public domain | W3C validator |