| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pion | Structured version Visualization version GIF version | ||
| Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pion | ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10764 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | nnon 7797 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Oncon0 6301 ωcom 7791 Ncnpi 10730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-ss 3914 df-om 7792 df-ni 10758 |
| This theorem is referenced by: indpi 10793 nqereu 10815 |
| Copyright terms: Public domain | W3C validator |