MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10877
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10871 . . 3 N = (ω ∖ {∅})
2 difss 4132 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 4017 . 2 N ⊆ ω
43sseli 3979 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cdif 3946  c0 4323  {csn 4629  ωcom 7859  Ncnpi 10843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3952  df-in 3956  df-ss 3966  df-ni 10871
This theorem is referenced by:  pion  10878  piord  10879  mulidpi  10885  addclpi  10891  mulclpi  10892  addcompi  10893  addasspi  10894  mulcompi  10895  mulasspi  10896  distrpi  10897  addcanpi  10898  mulcanpi  10899  addnidpi  10900  ltexpi  10901  ltapi  10902  ltmpi  10903  indpi  10906
  Copyright terms: Public domain W3C validator