MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10379
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10373 . . 3 N = (ω ∖ {∅})
2 difss 4023 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3912 . 2 N ⊆ ω
43sseli 3874 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cdif 3841  c0 4212  {csn 4517  ωcom 7600  Ncnpi 10345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-dif 3847  df-in 3851  df-ss 3861  df-ni 10373
This theorem is referenced by:  pion  10380  piord  10381  mulidpi  10387  addclpi  10393  mulclpi  10394  addcompi  10395  addasspi  10396  mulcompi  10397  mulasspi  10398  distrpi  10399  addcanpi  10400  mulcanpi  10401  addnidpi  10402  ltexpi  10403  ltapi  10404  ltmpi  10405  indpi  10408
  Copyright terms: Public domain W3C validator