![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 9981 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 3934 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3830 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3793 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∖ cdif 3765 ∅c0 4114 {csn 4367 ωcom 7298 Ncnpi 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-v 3386 df-dif 3771 df-in 3775 df-ss 3782 df-ni 9981 |
This theorem is referenced by: pion 9988 piord 9989 mulidpi 9995 addclpi 10001 mulclpi 10002 addcompi 10003 addasspi 10004 mulcompi 10005 mulasspi 10006 distrpi 10007 addcanpi 10008 mulcanpi 10009 addnidpi 10010 ltexpi 10011 ltapi 10012 ltmpi 10013 indpi 10016 |
Copyright terms: Public domain | W3C validator |