Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10373 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4023 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3912 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3874 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 ∖ cdif 3841 ∅c0 4212 {csn 4517 ωcom 7600 Ncnpi 10345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-dif 3847 df-in 3851 df-ss 3861 df-ni 10373 |
This theorem is referenced by: pion 10380 piord 10381 mulidpi 10387 addclpi 10393 mulclpi 10394 addcompi 10395 addasspi 10396 mulcompi 10397 mulasspi 10398 distrpi 10399 addcanpi 10400 mulcanpi 10401 addnidpi 10402 ltexpi 10403 ltapi 10404 ltmpi 10405 indpi 10408 |
Copyright terms: Public domain | W3C validator |