MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10634
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10628 . . 3 N = (ω ∖ {∅})
2 difss 4066 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3955 . 2 N ⊆ ω
43sseli 3917 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cdif 3884  c0 4256  {csn 4561  ωcom 7712  Ncnpi 10600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-ni 10628
This theorem is referenced by:  pion  10635  piord  10636  mulidpi  10642  addclpi  10648  mulclpi  10649  addcompi  10650  addasspi  10651  mulcompi  10652  mulasspi  10653  distrpi  10654  addcanpi  10655  mulcanpi  10656  addnidpi  10657  ltexpi  10658  ltapi  10659  ltmpi  10660  indpi  10663
  Copyright terms: Public domain W3C validator