MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10778
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10772 . . 3 N = (ω ∖ {∅})
2 difss 4085 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3977 . 2 N ⊆ ω
43sseli 3926 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cdif 3895  c0 4282  {csn 4577  ωcom 7804  Ncnpi 10744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-ss 3915  df-ni 10772
This theorem is referenced by:  pion  10779  piord  10780  mulidpi  10786  addclpi  10792  mulclpi  10793  addcompi  10794  addasspi  10795  mulcompi  10796  mulasspi  10797  distrpi  10798  addcanpi  10799  mulcanpi  10800  addnidpi  10801  ltexpi  10802  ltapi  10803  ltmpi  10804  indpi  10807
  Copyright terms: Public domain W3C validator