MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10869
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10863 . . 3 N = (ω ∖ {∅})
2 difss 4123 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 4008 . 2 N ⊆ ω
43sseli 3970 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  cdif 3937  c0 4314  {csn 4620  ωcom 7848  Ncnpi 10835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-ni 10863
This theorem is referenced by:  pion  10870  piord  10871  mulidpi  10877  addclpi  10883  mulclpi  10884  addcompi  10885  addasspi  10886  mulcompi  10887  mulasspi  10888  distrpi  10889  addcanpi  10890  mulcanpi  10891  addnidpi  10892  ltexpi  10893  ltapi  10894  ltmpi  10895  indpi  10898
  Copyright terms: Public domain W3C validator