Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10559 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4062 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3951 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3913 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 {csn 4558 ωcom 7687 Ncnpi 10531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-ni 10559 |
This theorem is referenced by: pion 10566 piord 10567 mulidpi 10573 addclpi 10579 mulclpi 10580 addcompi 10581 addasspi 10582 mulcompi 10583 mulasspi 10584 distrpi 10585 addcanpi 10586 mulcanpi 10587 addnidpi 10588 ltexpi 10589 ltapi 10590 ltmpi 10591 indpi 10594 |
Copyright terms: Public domain | W3C validator |