Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10628 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4066 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3955 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3917 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∖ cdif 3884 ∅c0 4256 {csn 4561 ωcom 7712 Ncnpi 10600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-ni 10628 |
This theorem is referenced by: pion 10635 piord 10636 mulidpi 10642 addclpi 10648 mulclpi 10649 addcompi 10650 addasspi 10651 mulcompi 10652 mulasspi 10653 distrpi 10654 addcanpi 10655 mulcanpi 10656 addnidpi 10657 ltexpi 10658 ltapi 10659 ltmpi 10660 indpi 10663 |
Copyright terms: Public domain | W3C validator |