| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10785 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4089 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3984 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3933 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3902 ∅c0 4286 {csn 4579 ωcom 7806 Ncnpi 10757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-ss 3922 df-ni 10785 |
| This theorem is referenced by: pion 10792 piord 10793 mulidpi 10799 addclpi 10805 mulclpi 10806 addcompi 10807 addasspi 10808 mulcompi 10809 mulasspi 10810 distrpi 10811 addcanpi 10812 mulcanpi 10813 addnidpi 10814 ltexpi 10815 ltapi 10816 ltmpi 10817 indpi 10820 |
| Copyright terms: Public domain | W3C validator |