![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10941 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4159 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 4043 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 4004 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 {csn 4648 ωcom 7903 Ncnpi 10913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-ni 10941 |
This theorem is referenced by: pion 10948 piord 10949 mulidpi 10955 addclpi 10961 mulclpi 10962 addcompi 10963 addasspi 10964 mulcompi 10965 mulasspi 10966 distrpi 10967 addcanpi 10968 mulcanpi 10969 addnidpi 10970 ltexpi 10971 ltapi 10972 ltmpi 10973 indpi 10976 |
Copyright terms: Public domain | W3C validator |