![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10863 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4123 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 4008 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3970 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∖ cdif 3937 ∅c0 4314 {csn 4620 ωcom 7848 Ncnpi 10835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-ni 10863 |
This theorem is referenced by: pion 10870 piord 10871 mulidpi 10877 addclpi 10883 mulclpi 10884 addcompi 10885 addasspi 10886 mulcompi 10887 mulasspi 10888 distrpi 10889 addcanpi 10890 mulcanpi 10891 addnidpi 10892 ltexpi 10893 ltapi 10894 ltmpi 10895 indpi 10898 |
Copyright terms: Public domain | W3C validator |