MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10831
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10825 . . 3 N = (ω ∖ {∅})
2 difss 4099 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3993 . 2 N ⊆ ω
43sseli 3942 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3911  c0 4296  {csn 4589  ωcom 7842  Ncnpi 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-ni 10825
This theorem is referenced by:  pion  10832  piord  10833  mulidpi  10839  addclpi  10845  mulclpi  10846  addcompi  10847  addasspi  10848  mulcompi  10849  mulasspi  10850  distrpi  10851  addcanpi  10852  mulcanpi  10853  addnidpi  10854  ltexpi  10855  ltapi  10856  ltmpi  10857  indpi  10860
  Copyright terms: Public domain W3C validator