MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10897
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10891 . . 3 N = (ω ∖ {∅})
2 difss 4116 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 4010 . 2 N ⊆ ω
43sseli 3959 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3928  c0 4313  {csn 4606  ωcom 7866  Ncnpi 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-ss 3948  df-ni 10891
This theorem is referenced by:  pion  10898  piord  10899  mulidpi  10905  addclpi  10911  mulclpi  10912  addcompi  10913  addasspi  10914  mulcompi  10915  mulasspi  10916  distrpi  10917  addcanpi  10918  mulcanpi  10919  addnidpi  10920  ltexpi  10921  ltapi  10922  ltmpi  10923  indpi  10926
  Copyright terms: Public domain W3C validator