| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10825 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4099 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3942 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3911 ∅c0 4296 {csn 4589 ωcom 7842 Ncnpi 10797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-ni 10825 |
| This theorem is referenced by: pion 10832 piord 10833 mulidpi 10839 addclpi 10845 mulclpi 10846 addcompi 10847 addasspi 10848 mulcompi 10849 mulasspi 10850 distrpi 10851 addcanpi 10852 mulcanpi 10853 addnidpi 10854 ltexpi 10855 ltapi 10856 ltmpi 10857 indpi 10860 |
| Copyright terms: Public domain | W3C validator |