| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10832 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4102 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3996 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3945 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3914 ∅c0 4299 {csn 4592 ωcom 7845 Ncnpi 10804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-ni 10832 |
| This theorem is referenced by: pion 10839 piord 10840 mulidpi 10846 addclpi 10852 mulclpi 10853 addcompi 10854 addasspi 10855 mulcompi 10856 mulasspi 10857 distrpi 10858 addcanpi 10859 mulcanpi 10860 addnidpi 10861 ltexpi 10862 ltapi 10863 ltmpi 10864 indpi 10867 |
| Copyright terms: Public domain | W3C validator |