MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10791
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10785 . . 3 N = (ω ∖ {∅})
2 difss 4089 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3984 . 2 N ⊆ ω
43sseli 3933 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3902  c0 4286  {csn 4579  ωcom 7806  Ncnpi 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-dif 3908  df-ss 3922  df-ni 10785
This theorem is referenced by:  pion  10792  piord  10793  mulidpi  10799  addclpi  10805  mulclpi  10806  addcompi  10807  addasspi  10808  mulcompi  10809  mulasspi  10810  distrpi  10811  addcanpi  10812  mulcanpi  10813  addnidpi  10814  ltexpi  10815  ltapi  10816  ltmpi  10817  indpi  10820
  Copyright terms: Public domain W3C validator