| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10763 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4086 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3981 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3930 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∖ cdif 3899 ∅c0 4283 {csn 4576 ωcom 7796 Ncnpi 10735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-ni 10763 |
| This theorem is referenced by: pion 10770 piord 10771 mulidpi 10777 addclpi 10783 mulclpi 10784 addcompi 10785 addasspi 10786 mulcompi 10787 mulasspi 10788 distrpi 10789 addcanpi 10790 mulcanpi 10791 addnidpi 10792 ltexpi 10793 ltapi 10794 ltmpi 10795 indpi 10798 |
| Copyright terms: Public domain | W3C validator |