| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10891 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4116 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 4010 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3959 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 {csn 4606 ωcom 7866 Ncnpi 10863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-ni 10891 |
| This theorem is referenced by: pion 10898 piord 10899 mulidpi 10905 addclpi 10911 mulclpi 10912 addcompi 10913 addasspi 10914 mulcompi 10915 mulasspi 10916 distrpi 10917 addcanpi 10918 mulcanpi 10919 addnidpi 10920 ltexpi 10921 ltapi 10922 ltmpi 10923 indpi 10926 |
| Copyright terms: Public domain | W3C validator |