MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinn Structured version   Visualization version   GIF version

Theorem pinn 10838
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
pinn (𝐴N𝐴 ∈ ω)

Proof of Theorem pinn
StepHypRef Expression
1 df-ni 10832 . . 3 N = (ω ∖ {∅})
2 difss 4102 . . 3 (ω ∖ {∅}) ⊆ ω
31, 2eqsstri 3996 . 2 N ⊆ ω
43sseli 3945 1 (𝐴N𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3914  c0 4299  {csn 4592  ωcom 7845  Ncnpi 10804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-ni 10832
This theorem is referenced by:  pion  10839  piord  10840  mulidpi  10846  addclpi  10852  mulclpi  10853  addcompi  10854  addasspi  10855  mulcompi  10856  mulasspi  10857  distrpi  10858  addcanpi  10859  mulcanpi  10860  addnidpi  10861  ltexpi  10862  ltapi  10863  ltmpi  10864  indpi  10867
  Copyright terms: Public domain W3C validator