| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinn | Structured version Visualization version GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10772 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4085 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3977 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3926 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∖ cdif 3895 ∅c0 4282 {csn 4577 ωcom 7804 Ncnpi 10744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-ni 10772 |
| This theorem is referenced by: pion 10779 piord 10780 mulidpi 10786 addclpi 10792 mulclpi 10793 addcompi 10794 addasspi 10795 mulcompi 10796 mulasspi 10797 distrpi 10798 addcanpi 10799 mulcanpi 10800 addnidpi 10801 ltexpi 10802 ltapi 10803 ltmpi 10804 indpi 10807 |
| Copyright terms: Public domain | W3C validator |