MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  piord Structured version   Visualization version   GIF version

Theorem piord 10899
Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) (New usage is discouraged.)
Assertion
Ref Expression
piord (𝐴N → Ord 𝐴)

Proof of Theorem piord
StepHypRef Expression
1 pinn 10897 . 2 (𝐴N𝐴 ∈ ω)
2 nnord 7874 . 2 (𝐴 ∈ ω → Ord 𝐴)
31, 2syl 17 1 (𝐴N → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ord word 6356  ωcom 7866  Ncnpi 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-ss 3948  df-uni 4889  df-tr 5235  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-om 7867  df-ni 10891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator