| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elxp2 5708 | . . 3
⊢ (𝐴 ∈ (N ×
N) ↔ ∃𝑎 ∈ N ∃𝑏 ∈ N 𝐴 = 〈𝑎, 𝑏〉) | 
| 2 |  | pion 10920 | . . . . . . . . 9
⊢ (𝑏 ∈ N →
𝑏 ∈
On) | 
| 3 |  | onsuc 7832 | . . . . . . . . 9
⊢ (𝑏 ∈ On → suc 𝑏 ∈ On) | 
| 4 | 2, 3 | syl 17 | . . . . . . . 8
⊢ (𝑏 ∈ N →
suc 𝑏 ∈
On) | 
| 5 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑏 ∈ V | 
| 6 | 5 | sucid 6465 | . . . . . . . 8
⊢ 𝑏 ∈ suc 𝑏 | 
| 7 |  | eleq2 2829 | . . . . . . . . 9
⊢ (𝑦 = suc 𝑏 → (𝑏 ∈ 𝑦 ↔ 𝑏 ∈ suc 𝑏)) | 
| 8 | 7 | rspcev 3621 | . . . . . . . 8
⊢ ((suc
𝑏 ∈ On ∧ 𝑏 ∈ suc 𝑏) → ∃𝑦 ∈ On 𝑏 ∈ 𝑦) | 
| 9 | 4, 6, 8 | sylancl 586 | . . . . . . 7
⊢ (𝑏 ∈ N →
∃𝑦 ∈ On 𝑏 ∈ 𝑦) | 
| 10 | 9 | adantl 481 | . . . . . 6
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ ∃𝑦 ∈ On
𝑏 ∈ 𝑦) | 
| 11 |  | elequ2 2122 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑚 → (𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑚)) | 
| 12 | 11 | imbi1d 341 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑚 → ((𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉) ↔ (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 13 | 12 | 2ralbidv 3220 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑚 → (∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉) ↔ ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 14 |  | opeq1 4872 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑎 → 〈𝑐, 𝑑〉 = 〈𝑎, 𝑑〉) | 
| 15 | 14 | breq2d 5154 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑎 → (𝑥 ~Q 〈𝑐, 𝑑〉 ↔ 𝑥 ~Q 〈𝑎, 𝑑〉)) | 
| 16 | 15 | rexbidv 3178 | . . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑎 → (∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉 ↔ ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑑〉)) | 
| 17 | 16 | imbi2d 340 | . . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑎 → ((𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) ↔ (𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑑〉))) | 
| 18 |  | elequ1 2114 | . . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → (𝑑 ∈ 𝑚 ↔ 𝑏 ∈ 𝑚)) | 
| 19 |  | opeq2 4873 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑏 → 〈𝑎, 𝑑〉 = 〈𝑎, 𝑏〉) | 
| 20 | 19 | breq2d 5154 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑏 → (𝑥 ~Q 〈𝑎, 𝑑〉 ↔ 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 21 | 20 | rexbidv 3178 | . . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → (∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑑〉 ↔ ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 22 | 18, 21 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑏 → ((𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑑〉) ↔ (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 23 | 17, 22 | cbvral2vw 3240 | . . . . . . . . . . . . . . 15
⊢
(∀𝑐 ∈
N ∀𝑑
∈ N (𝑑
∈ 𝑚 →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑐, 𝑑〉) ↔ ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 24 | 23 | ralbii 3092 | . . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ↔ ∀𝑚 ∈ 𝑦 ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 25 |  | rexnal 3099 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧 ∈
(N × N) ¬ (〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) ↔ ¬ ∀𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
𝑏)) | 
| 26 |  | pm4.63 397 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(〈𝑎, 𝑏〉
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
𝑏) ↔ (〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧)
<N 𝑏)) | 
| 27 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ (N ×
N) → (2nd ‘𝑧) ∈ N) | 
| 28 |  | ltpiord 10928 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑧) ∈ N ∧ 𝑏 ∈ N) →
((2nd ‘𝑧)
<N 𝑏 ↔ (2nd ‘𝑧) ∈ 𝑏)) | 
| 29 | 28 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑏 ∈ N ∧
(2nd ‘𝑧)
∈ N) → ((2nd ‘𝑧) <N 𝑏 ↔ (2nd
‘𝑧) ∈ 𝑏)) | 
| 30 | 27, 29 | sylan2 593 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ N ∧
𝑧 ∈ (N
× N)) → ((2nd ‘𝑧) <N 𝑏 ↔ (2nd
‘𝑧) ∈ 𝑏)) | 
| 31 | 30 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ 𝑧 ∈
(N × N)) → ((2nd ‘𝑧) <N
𝑏 ↔ (2nd
‘𝑧) ∈ 𝑏)) | 
| 32 | 31 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ 𝑧 ∈
(N × N)) → ((〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧)
<N 𝑏) ↔ (〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧) ∈ 𝑏))) | 
| 33 | 26, 32 | bitrid 283 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ 𝑧 ∈
(N × N)) → (¬ (〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) ↔ (〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧) ∈ 𝑏))) | 
| 34 | 33 | rexbidva 3176 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (∃𝑧 ∈
(N × N) ¬ (〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) ↔ ∃𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 ∧ (2nd ‘𝑧) ∈ 𝑏))) | 
| 35 | 25, 34 | bitr3id 285 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (¬ ∀𝑧
∈ (N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) ↔ ∃𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 ∧ (2nd ‘𝑧) ∈ 𝑏))) | 
| 36 |  | xp1st 8047 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ (N ×
N) → (1st ‘𝑧) ∈ N) | 
| 37 |  | elequ2 2122 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 = 𝑏 → (𝑑 ∈ 𝑚 ↔ 𝑑 ∈ 𝑏)) | 
| 38 | 37 | imbi1d 341 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 = 𝑏 → ((𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) ↔ (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉))) | 
| 39 | 38 | 2ralbidv 3220 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 = 𝑏 → (∀𝑐 ∈ N ∀𝑑 ∈ N (𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) ↔ ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉))) | 
| 40 | 39 | rspccv 3618 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → (𝑏 ∈ 𝑦 → ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉))) | 
| 41 |  | opeq1 4872 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑐 = (1st ‘𝑧) → 〈𝑐, 𝑑〉 = 〈(1st ‘𝑧), 𝑑〉) | 
| 42 | 41 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 = (1st ‘𝑧) → (𝑥 ~Q 〈𝑐, 𝑑〉 ↔ 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉)) | 
| 43 | 42 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (1st ‘𝑧) → (∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉 ↔ ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉)) | 
| 44 | 43 | imbi2d 340 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = (1st ‘𝑧) → ((𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) ↔ (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉))) | 
| 45 | 44 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = (1st ‘𝑧) → (∀𝑑 ∈ N (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) ↔ ∀𝑑 ∈ N (𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉))) | 
| 46 | 45 | rspccv 3618 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑐 ∈
N ∀𝑑
∈ N (𝑑
∈ 𝑏 →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑐, 𝑑〉) → ((1st ‘𝑧) ∈ N →
∀𝑑 ∈
N (𝑑 ∈
𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉))) | 
| 47 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑑 = (2nd ‘𝑧) → (𝑑 ∈ 𝑏 ↔ (2nd ‘𝑧) ∈ 𝑏)) | 
| 48 |  | opeq2 4873 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑑 = (2nd ‘𝑧) → 〈(1st
‘𝑧), 𝑑〉 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) | 
| 49 | 48 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑑 = (2nd ‘𝑧) → (𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉 ↔ 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)) | 
| 50 | 49 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑑 = (2nd ‘𝑧) → (∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉 ↔ ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)) | 
| 51 | 47, 50 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑑 = (2nd ‘𝑧) → ((𝑑 ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉) ↔ ((2nd ‘𝑧) ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉))) | 
| 52 | 51 | rspccv 3618 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑑 ∈
N (𝑑 ∈
𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), 𝑑〉) → ((2nd ‘𝑧) ∈ N →
((2nd ‘𝑧)
∈ 𝑏 →
∃𝑥 ∈
Q 𝑥
~Q 〈(1st ‘𝑧), (2nd ‘𝑧)〉))) | 
| 53 | 46, 52 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑐 ∈
N ∀𝑑
∈ N (𝑑
∈ 𝑏 →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑐, 𝑑〉) → ((1st ‘𝑧) ∈ N →
((2nd ‘𝑧)
∈ N → ((2nd ‘𝑧) ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)))) | 
| 54 | 40, 53 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → (𝑏 ∈ 𝑦 → ((1st ‘𝑧) ∈ N →
((2nd ‘𝑧)
∈ N → ((2nd ‘𝑧) ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉))))) | 
| 55 | 54 | imp 406 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) → ((1st ‘𝑧) ∈ N →
((2nd ‘𝑧)
∈ N → ((2nd ‘𝑧) ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)))) | 
| 56 | 36, 55 | syl5 34 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) → (𝑧 ∈ (N ×
N) → ((2nd ‘𝑧) ∈ N →
((2nd ‘𝑧)
∈ 𝑏 →
∃𝑥 ∈
Q 𝑥
~Q 〈(1st ‘𝑧), (2nd ‘𝑧)〉)))) | 
| 57 | 27, 56 | mpdi 45 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) → (𝑧 ∈ (N ×
N) → ((2nd ‘𝑧) ∈ 𝑏 → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉))) | 
| 58 | 57 | 3imp 1110 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N) ∧ (2nd ‘𝑧) ∈ 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 59 |  | 1st2nd2 8054 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ (N ×
N) → 𝑧 =
〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 60 | 59 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ (N ×
N) → (𝑥
~Q 𝑧 ↔ 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)) | 
| 61 | 60 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ (N ×
N) → (∃𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)) | 
| 62 | 61 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N) ∧ (2nd ‘𝑧) ∈ 𝑏) → (∃𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃𝑥 ∈ Q 𝑥 ~Q
〈(1st ‘𝑧), (2nd ‘𝑧)〉)) | 
| 63 | 58, 62 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N) ∧ (2nd ‘𝑧) ∈ 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q 𝑧) | 
| 64 |  | enqer 10962 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 
~Q Er (N ×
N) | 
| 65 | 64 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((〈𝑎, 𝑏〉
~Q 𝑧 ∧ 𝑥 ~Q 𝑧) →
~Q Er (N ×
N)) | 
| 66 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((〈𝑎, 𝑏〉
~Q 𝑧 ∧ 𝑥 ~Q 𝑧) → 𝑥 ~Q 𝑧) | 
| 67 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((〈𝑎, 𝑏〉
~Q 𝑧 ∧ 𝑥 ~Q 𝑧) → 〈𝑎, 𝑏〉 ~Q 𝑧) | 
| 68 | 65, 66, 67 | ertr4d 8765 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((〈𝑎, 𝑏〉
~Q 𝑧 ∧ 𝑥 ~Q 𝑧) → 𝑥 ~Q 〈𝑎, 𝑏〉) | 
| 69 | 68 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(〈𝑎, 𝑏〉
~Q 𝑧 → (𝑥 ~Q 𝑧 → 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 70 | 69 | reximdv 3169 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑎, 𝑏〉
~Q 𝑧 → (∃𝑥 ∈ Q 𝑥 ~Q 𝑧 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)) | 
| 71 | 63, 70 | syl5com 31 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N) ∧ (2nd ‘𝑧) ∈ 𝑏) → (〈𝑎, 𝑏〉 ~Q 𝑧 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)) | 
| 72 | 71 | 3expia 1121 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N)) → ((2nd ‘𝑧) ∈ 𝑏 → (〈𝑎, 𝑏〉 ~Q 𝑧 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 73 | 72 | impcomd 411 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) ∧ 𝑧 ∈ (N ×
N)) → ((〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧) ∈ 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)) | 
| 74 | 73 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) ∧ 𝑏 ∈ 𝑦) → (∃𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 ∧ (2nd ‘𝑧) ∈ 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 75 | 74 | ex 412 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → (𝑏 ∈ 𝑦 → (∃𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 ∧ (2nd ‘𝑧) ∈ 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 76 | 75 | com3r 87 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 ∧ (2nd
‘𝑧) ∈ 𝑏) → (∀𝑚 ∈ 𝑦 ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) → (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 77 | 35, 76 | biimtrdi 253 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (¬ ∀𝑧
∈ (N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) → (∀𝑚 ∈ 𝑦 ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑑 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑐, 𝑑〉) → (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)))) | 
| 78 | 77 | com13 88 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → (¬ ∀𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
𝑏) → ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)))) | 
| 79 |  | mulcompi 10937 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎
·N 𝑏) = (𝑏 ·N 𝑎) | 
| 80 |  | enqbreq 10960 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ (𝑎 ∈
N ∧ 𝑏
∈ N)) → (〈𝑎, 𝑏〉 ~Q
〈𝑎, 𝑏〉 ↔ (𝑎 ·N 𝑏) = (𝑏 ·N 𝑎))) | 
| 81 | 80 | anidms 566 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (〈𝑎, 𝑏〉
~Q 〈𝑎, 𝑏〉 ↔ (𝑎 ·N 𝑏) = (𝑏 ·N 𝑎))) | 
| 82 | 79, 81 | mpbiri 258 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ 〈𝑎, 𝑏〉
~Q 〈𝑎, 𝑏〉) | 
| 83 |  | opelxpi 5721 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ 〈𝑎, 𝑏〉 ∈ (N
× N)) | 
| 84 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (𝑦 ~Q 𝑧 ↔ 〈𝑎, 𝑏〉 ~Q 𝑧)) | 
| 85 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑎 ∈ V | 
| 86 | 85, 5 | op2ndd 8026 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (2nd ‘𝑦) = 𝑏) | 
| 87 | 86 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑧) <N
(2nd ‘𝑦)
↔ (2nd ‘𝑧) <N 𝑏)) | 
| 88 | 87 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (¬ (2nd
‘𝑧)
<N (2nd ‘𝑦) ↔ ¬ (2nd ‘𝑧) <N
𝑏)) | 
| 89 | 84, 88 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 〈𝑎, 𝑏〉 → ((𝑦 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑦)) ↔ (〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏))) | 
| 90 | 89 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (∀𝑧 ∈ (N ×
N)(𝑦
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑦))
↔ ∀𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏))) | 
| 91 |  | df-nq 10953 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Q = {𝑦
∈ (N × N) ∣ ∀𝑧 ∈ (N ×
N)(𝑦
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑦))} | 
| 92 | 90, 91 | elrab2 3694 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑎, 𝑏〉 ∈ Q
↔ (〈𝑎, 𝑏〉 ∈ (N
× N) ∧ ∀𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
𝑏))) | 
| 93 | 92 | simplbi2 500 | . . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑎, 𝑏〉 ∈ (N
× N) → (∀𝑧 ∈ (N ×
N)(〈𝑎,
𝑏〉
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
𝑏) → 〈𝑎, 𝑏〉 ∈
Q)) | 
| 94 | 83, 93 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (∀𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) → 〈𝑎, 𝑏〉 ∈
Q)) | 
| 95 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝑥 ~Q 〈𝑎, 𝑏〉 ↔ 〈𝑎, 𝑏〉 ~Q
〈𝑎, 𝑏〉)) | 
| 96 | 95 | rspcev 3621 | . . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑎, 𝑏〉 ∈ Q
∧ 〈𝑎, 𝑏〉
~Q 〈𝑎, 𝑏〉) → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉) | 
| 97 | 96 | expcom 413 | . . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑎, 𝑏〉
~Q 〈𝑎, 𝑏〉 → (〈𝑎, 𝑏〉 ∈ Q →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑎, 𝑏〉)) | 
| 98 | 82, 94, 97 | sylsyld 61 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (∀𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 99 | 98 | com12 32 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) → ((𝑎 ∈ N ∧ 𝑏 ∈ N) →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑎, 𝑏〉)) | 
| 100 | 99 | a1dd 50 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
(N × N)(〈𝑎, 𝑏〉 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N 𝑏) → ((𝑎 ∈ N ∧ 𝑏 ∈ N) →
(𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 101 | 78, 100 | pm2.61d2 181 | . . . . . . . . . . . . . . 15
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → ((𝑎 ∈ N ∧ 𝑏 ∈ N) →
(𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 102 | 101 | ralrimivv 3199 | . . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
𝑦 ∀𝑐 ∈ N
∀𝑑 ∈
N (𝑑 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑐, 𝑑〉) → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 103 | 24, 102 | sylbir 235 | . . . . . . . . . . . . 13
⊢
(∀𝑚 ∈
𝑦 ∀𝑎 ∈ N
∀𝑏 ∈
N (𝑏 ∈
𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉) → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 104 | 103 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ On → (∀𝑚 ∈ 𝑦 ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑚 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉) → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 105 | 13, 104 | tfis2 7879 | . . . . . . . . . . 11
⊢ (𝑦 ∈ On → ∀𝑎 ∈ N
∀𝑏 ∈
N (𝑏 ∈
𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)) | 
| 106 |  | rsp 3246 | . . . . . . . . . . 11
⊢
(∀𝑎 ∈
N ∀𝑏
∈ N (𝑏
∈ 𝑦 →
∃𝑥 ∈
Q 𝑥
~Q 〈𝑎, 𝑏〉) → (𝑎 ∈ N → ∀𝑏 ∈ N (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 107 | 105, 106 | syl 17 | . . . . . . . . . 10
⊢ (𝑦 ∈ On → (𝑎 ∈ N →
∀𝑏 ∈
N (𝑏 ∈
𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 108 |  | rsp 3246 | . . . . . . . . . 10
⊢
(∀𝑏 ∈
N (𝑏 ∈
𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉) → (𝑏 ∈ N → (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉))) | 
| 109 | 107, 108 | syl6 35 | . . . . . . . . 9
⊢ (𝑦 ∈ On → (𝑎 ∈ N →
(𝑏 ∈ N
→ (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)))) | 
| 110 | 109 | impd 410 | . . . . . . . 8
⊢ (𝑦 ∈ On → ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 111 | 110 | com12 32 | . . . . . . 7
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (𝑦 ∈ On →
(𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉))) | 
| 112 | 111 | rexlimdv 3152 | . . . . . 6
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (∃𝑦 ∈ On
𝑏 ∈ 𝑦 → ∃𝑥 ∈ Q 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 113 | 10, 112 | mpd 15 | . . . . 5
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ ∃𝑥 ∈
Q 𝑥
~Q 〈𝑎, 𝑏〉) | 
| 114 |  | breq2 5146 | . . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑥 ~Q 𝐴 ↔ 𝑥 ~Q 〈𝑎, 𝑏〉)) | 
| 115 | 114 | rexbidv 3178 | . . . . 5
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (∃𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ∃𝑥 ∈ Q 𝑥 ~Q
〈𝑎, 𝑏〉)) | 
| 116 | 113, 115 | syl5ibrcom 247 | . . . 4
⊢ ((𝑎 ∈ N ∧
𝑏 ∈ N)
→ (𝐴 = 〈𝑎, 𝑏〉 → ∃𝑥 ∈ Q 𝑥 ~Q 𝐴)) | 
| 117 | 116 | rexlimivv 3200 | . . 3
⊢
(∃𝑎 ∈
N ∃𝑏
∈ N 𝐴 =
〈𝑎, 𝑏〉 → ∃𝑥 ∈ Q 𝑥 ~Q 𝐴) | 
| 118 | 1, 117 | sylbi 217 | . 2
⊢ (𝐴 ∈ (N ×
N) → ∃𝑥 ∈ Q 𝑥 ~Q 𝐴) | 
| 119 |  | breq2 5146 | . . . . . 6
⊢ (𝑎 = 𝐴 → (𝑥 ~Q 𝑎 ↔ 𝑥 ~Q 𝐴)) | 
| 120 |  | breq2 5146 | . . . . . 6
⊢ (𝑎 = 𝐴 → (𝑦 ~Q 𝑎 ↔ 𝑦 ~Q 𝐴)) | 
| 121 | 119, 120 | anbi12d 632 | . . . . 5
⊢ (𝑎 = 𝐴 → ((𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎) ↔ (𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴))) | 
| 122 | 121 | imbi1d 341 | . . . 4
⊢ (𝑎 = 𝐴 → (((𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 = 𝑦) ↔ ((𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴) → 𝑥 = 𝑦))) | 
| 123 | 122 | 2ralbidv 3220 | . . 3
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ Q ∀𝑦 ∈ Q ((𝑥 ~Q
𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ Q ∀𝑦 ∈ Q ((𝑥 ~Q
𝐴 ∧ 𝑦 ~Q 𝐴) → 𝑥 = 𝑦))) | 
| 124 | 64 | a1i 11 | . . . . . 6
⊢ ((𝑥 ~Q
𝑎 ∧ 𝑦 ~Q 𝑎) →
~Q Er (N ×
N)) | 
| 125 |  | simpl 482 | . . . . . 6
⊢ ((𝑥 ~Q
𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 ~Q 𝑎) | 
| 126 |  | simpr 484 | . . . . . 6
⊢ ((𝑥 ~Q
𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑦 ~Q 𝑎) | 
| 127 | 124, 125,
126 | ertr4d 8765 | . . . . 5
⊢ ((𝑥 ~Q
𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 ~Q 𝑦) | 
| 128 |  | mulcompi 10937 | . . . . . . . . . . 11
⊢
((2nd ‘𝑥) ·N
(1st ‘𝑥))
= ((1st ‘𝑥) ·N
(2nd ‘𝑥)) | 
| 129 |  | elpqn 10966 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ Q →
𝑦 ∈ (N
× N)) | 
| 130 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (𝑦 ~Q 𝑧 ↔ 𝑥 ~Q 𝑧)) | 
| 131 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (2nd ‘𝑦) = (2nd ‘𝑥)) | 
| 132 | 131 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → ((2nd ‘𝑧) <N
(2nd ‘𝑦)
↔ (2nd ‘𝑧) <N
(2nd ‘𝑥))) | 
| 133 | 132 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (¬ (2nd ‘𝑧) <N
(2nd ‘𝑦)
↔ ¬ (2nd ‘𝑧) <N
(2nd ‘𝑥))) | 
| 134 | 130, 133 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → ((𝑦 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑦)) ↔ (𝑥 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑥)))) | 
| 135 | 134 | ralbidv 3177 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ (N ×
N)(𝑦
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑦))
↔ ∀𝑧 ∈
(N × N)(𝑥 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑥)))) | 
| 136 | 135, 91 | elrab2 3694 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Q ↔
(𝑥 ∈ (N
× N) ∧ ∀𝑧 ∈ (N ×
N)(𝑥
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑥)))) | 
| 137 | 136 | simprbi 496 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Q →
∀𝑧 ∈
(N × N)(𝑥 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑥))) | 
| 138 |  | breq2 5146 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 𝑦)) | 
| 139 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → (2nd ‘𝑧) = (2nd ‘𝑦)) | 
| 140 | 139 | breq1d 5152 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ((2nd ‘𝑧) <N
(2nd ‘𝑥)
↔ (2nd ‘𝑦) <N
(2nd ‘𝑥))) | 
| 141 | 140 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (¬ (2nd ‘𝑧) <N
(2nd ‘𝑥)
↔ ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥))) | 
| 142 | 138, 141 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → ((𝑥 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑥)) ↔ (𝑥 ~Q 𝑦 → ¬ (2nd
‘𝑦)
<N (2nd ‘𝑥)))) | 
| 143 | 142 | rspcva 3619 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (N ×
N) ∧ ∀𝑧 ∈ (N ×
N)(𝑥
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑥)))
→ (𝑥
~Q 𝑦 → ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥))) | 
| 144 | 129, 137,
143 | syl2anr 597 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
~Q 𝑦 → ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥))) | 
| 145 | 144 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥)) | 
| 146 |  | elpqn 10966 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Q →
𝑥 ∈ (N
× N)) | 
| 147 | 91 | reqabi 3459 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ Q ↔
(𝑦 ∈ (N
× N) ∧ ∀𝑧 ∈ (N ×
N)(𝑦
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑦)))) | 
| 148 | 147 | simprbi 496 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ Q →
∀𝑧 ∈
(N × N)(𝑦 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑦))) | 
| 149 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (𝑦 ~Q 𝑧 ↔ 𝑦 ~Q 𝑥)) | 
| 150 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑥 → (2nd ‘𝑧) = (2nd ‘𝑥)) | 
| 151 | 150 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → ((2nd ‘𝑧) <N
(2nd ‘𝑦)
↔ (2nd ‘𝑥) <N
(2nd ‘𝑦))) | 
| 152 | 151 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (¬ (2nd ‘𝑧) <N
(2nd ‘𝑦)
↔ ¬ (2nd ‘𝑥) <N
(2nd ‘𝑦))) | 
| 153 | 149, 152 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → ((𝑦 ~Q 𝑧 → ¬ (2nd
‘𝑧)
<N (2nd ‘𝑦)) ↔ (𝑦 ~Q 𝑥 → ¬ (2nd
‘𝑥)
<N (2nd ‘𝑦)))) | 
| 154 | 153 | rspcva 3619 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (N ×
N) ∧ ∀𝑧 ∈ (N ×
N)(𝑦
~Q 𝑧 → ¬ (2nd ‘𝑧) <N
(2nd ‘𝑦)))
→ (𝑦
~Q 𝑥 → ¬ (2nd ‘𝑥) <N
(2nd ‘𝑦))) | 
| 155 | 146, 148,
154 | syl2an 596 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑦
~Q 𝑥 → ¬ (2nd ‘𝑥) <N
(2nd ‘𝑦))) | 
| 156 | 64 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ~Q
𝑦 →
~Q Er (N ×
N)) | 
| 157 |  | id 22 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ~Q
𝑦 → 𝑥 ~Q 𝑦) | 
| 158 | 156, 157 | ersym 8758 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ~Q
𝑦 → 𝑦 ~Q 𝑥) | 
| 159 | 155, 158 | impel 505 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ¬ (2nd ‘𝑥) <N
(2nd ‘𝑦)) | 
| 160 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (N ×
N) → (2nd ‘𝑥) ∈ N) | 
| 161 | 146, 160 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Q →
(2nd ‘𝑥)
∈ N) | 
| 162 | 161 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (2nd ‘𝑥) ∈
N) | 
| 163 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (N ×
N) → (2nd ‘𝑦) ∈ N) | 
| 164 | 129, 163 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ Q →
(2nd ‘𝑦)
∈ N) | 
| 165 | 164 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (2nd ‘𝑦) ∈
N) | 
| 166 |  | ltsopi 10929 | . . . . . . . . . . . . . . . . . . 19
⊢ 
<N Or N | 
| 167 |  | sotric 5621 | . . . . . . . . . . . . . . . . . . 19
⊢ ((
<N Or N ∧ ((2nd
‘𝑥) ∈
N ∧ (2nd ‘𝑦) ∈ N)) →
((2nd ‘𝑥)
<N (2nd ‘𝑦) ↔ ¬ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd
‘𝑦)
<N (2nd ‘𝑥)))) | 
| 168 | 166, 167 | mpan 690 | . . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘𝑥) ∈ N ∧
(2nd ‘𝑦)
∈ N) → ((2nd ‘𝑥) <N
(2nd ‘𝑦)
↔ ¬ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥)))) | 
| 169 | 168 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘𝑥) ∈ N ∧
(2nd ‘𝑦)
∈ N) → (¬ (2nd ‘𝑥) <N
(2nd ‘𝑦)
↔ ¬ ¬ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥)))) | 
| 170 |  | notnotb 315 | . . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥))
↔ ¬ ¬ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥))) | 
| 171 | 169, 170 | bitr4di 289 | . . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑥) ∈ N ∧
(2nd ‘𝑦)
∈ N) → (¬ (2nd ‘𝑥) <N
(2nd ‘𝑦)
↔ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥)))) | 
| 172 | 162, 165,
171 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (¬ (2nd ‘𝑥) <N
(2nd ‘𝑦)
↔ ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd ‘𝑦) <N
(2nd ‘𝑥)))) | 
| 173 | 159, 172 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ((2nd ‘𝑥) = (2nd ‘𝑦) ∨ (2nd
‘𝑦)
<N (2nd ‘𝑥))) | 
| 174 | 173 | ord 864 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (¬ (2nd ‘𝑥) = (2nd ‘𝑦) → (2nd
‘𝑦)
<N (2nd ‘𝑥))) | 
| 175 | 145, 174 | mt3d 148 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (2nd ‘𝑥) = (2nd ‘𝑦)) | 
| 176 | 175 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ((1st ‘𝑥)
·N (2nd ‘𝑥)) = ((1st ‘𝑥)
·N (2nd ‘𝑦))) | 
| 177 | 128, 176 | eqtrid 2788 | . . . . . . . . . 10
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ((2nd ‘𝑥)
·N (1st ‘𝑥)) = ((1st ‘𝑥)
·N (2nd ‘𝑦))) | 
| 178 |  | 1st2nd2 8054 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (N ×
N) → 𝑥 =
〈(1st ‘𝑥), (2nd ‘𝑥)〉) | 
| 179 |  | 1st2nd2 8054 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (N ×
N) → 𝑦 =
〈(1st ‘𝑦), (2nd ‘𝑦)〉) | 
| 180 | 178, 179 | breqan12d 5158 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (𝑥 ~Q 𝑦 ↔ 〈(1st
‘𝑥), (2nd
‘𝑥)〉
~Q 〈(1st ‘𝑦), (2nd ‘𝑦)〉)) | 
| 181 |  | xp1st 8047 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (N ×
N) → (1st ‘𝑥) ∈ N) | 
| 182 | 181, 160 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (N ×
N) → ((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N)) | 
| 183 |  | xp1st 8047 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (N ×
N) → (1st ‘𝑦) ∈ N) | 
| 184 | 183, 163 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (N ×
N) → ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) | 
| 185 |  | enqbreq 10960 | . . . . . . . . . . . . . 14
⊢
((((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N) ∧ ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) → (〈(1st ‘𝑥), (2nd ‘𝑥)〉
~Q 〈(1st ‘𝑦), (2nd ‘𝑦)〉 ↔ ((1st ‘𝑥)
·N (2nd ‘𝑦)) = ((2nd ‘𝑥)
·N (1st ‘𝑦)))) | 
| 186 | 182, 184,
185 | syl2an 596 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (〈(1st
‘𝑥), (2nd
‘𝑥)〉
~Q 〈(1st ‘𝑦), (2nd ‘𝑦)〉 ↔ ((1st ‘𝑥)
·N (2nd ‘𝑦)) = ((2nd ‘𝑥)
·N (1st ‘𝑦)))) | 
| 187 | 180, 186 | bitrd 279 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (𝑥 ~Q 𝑦 ↔ ((1st
‘𝑥)
·N (2nd ‘𝑦)) = ((2nd ‘𝑥)
·N (1st ‘𝑦)))) | 
| 188 | 146, 129,
187 | syl2an 596 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
~Q 𝑦 ↔ ((1st ‘𝑥)
·N (2nd ‘𝑦)) = ((2nd ‘𝑥)
·N (1st ‘𝑦)))) | 
| 189 | 188 | biimpa 476 | . . . . . . . . . 10
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ((1st ‘𝑥)
·N (2nd ‘𝑦)) = ((2nd ‘𝑥)
·N (1st ‘𝑦))) | 
| 190 | 177, 189 | eqtrd 2776 | . . . . . . . . 9
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → ((2nd ‘𝑥)
·N (1st ‘𝑥)) = ((2nd ‘𝑥)
·N (1st ‘𝑦))) | 
| 191 | 146 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 𝑥 ∈ (N ×
N)) | 
| 192 |  | mulcanpi 10941 | . . . . . . . . . . 11
⊢
(((2nd ‘𝑥) ∈ N ∧
(1st ‘𝑥)
∈ N) → (((2nd ‘𝑥) ·N
(1st ‘𝑥))
= ((2nd ‘𝑥) ·N
(1st ‘𝑦))
↔ (1st ‘𝑥) = (1st ‘𝑦))) | 
| 193 | 160, 181,
192 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑥 ∈ (N ×
N) → (((2nd ‘𝑥) ·N
(1st ‘𝑥))
= ((2nd ‘𝑥) ·N
(1st ‘𝑦))
↔ (1st ‘𝑥) = (1st ‘𝑦))) | 
| 194 | 191, 193 | syl 17 | . . . . . . . . 9
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (((2nd ‘𝑥)
·N (1st ‘𝑥)) = ((2nd ‘𝑥)
·N (1st ‘𝑦)) ↔ (1st ‘𝑥) = (1st ‘𝑦))) | 
| 195 | 190, 194 | mpbid 232 | . . . . . . . 8
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → (1st ‘𝑥) = (1st ‘𝑦)) | 
| 196 | 195, 175 | opeq12d 4880 | . . . . . . 7
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈(1st
‘𝑦), (2nd
‘𝑦)〉) | 
| 197 | 191, 178 | syl 17 | . . . . . . 7
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) | 
| 198 | 129 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 𝑦 ∈ (N ×
N)) | 
| 199 | 198, 179 | syl 17 | . . . . . . 7
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | 
| 200 | 196, 197,
199 | 3eqtr4d 2786 | . . . . . 6
⊢ (((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ 𝑥
~Q 𝑦) → 𝑥 = 𝑦) | 
| 201 | 200 | ex 412 | . . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
~Q 𝑦 → 𝑥 = 𝑦)) | 
| 202 | 127, 201 | syl5 34 | . . . 4
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ ((𝑥
~Q 𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 = 𝑦)) | 
| 203 | 202 | rgen2 3198 | . . 3
⊢
∀𝑥 ∈
Q ∀𝑦
∈ Q ((𝑥
~Q 𝑎 ∧ 𝑦 ~Q 𝑎) → 𝑥 = 𝑦) | 
| 204 | 123, 203 | vtoclg 3553 | . 2
⊢ (𝐴 ∈ (N ×
N) → ∀𝑥 ∈ Q ∀𝑦 ∈ Q ((𝑥 ~Q
𝐴 ∧ 𝑦 ~Q 𝐴) → 𝑥 = 𝑦)) | 
| 205 |  | breq1 5145 | . . 3
⊢ (𝑥 = 𝑦 → (𝑥 ~Q 𝐴 ↔ 𝑦 ~Q 𝐴)) | 
| 206 | 205 | reu4 3736 | . 2
⊢
(∃!𝑥 ∈
Q 𝑥
~Q 𝐴 ↔ (∃𝑥 ∈ Q 𝑥 ~Q 𝐴 ∧ ∀𝑥 ∈ Q
∀𝑦 ∈
Q ((𝑥
~Q 𝐴 ∧ 𝑦 ~Q 𝐴) → 𝑥 = 𝑦))) | 
| 207 | 118, 204,
206 | sylanbrc 583 | 1
⊢ (𝐴 ∈ (N ×
N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐴) |