MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po0 Structured version   Visualization version   GIF version

Theorem po0 5601
Description: Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
po0 𝑅 Po ∅

Proof of Theorem po0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4508 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 df-po 5584 . 2 (𝑅 Po ∅ ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
31, 2mpbir 230 1 𝑅 Po ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3056  c0 4318   class class class wbr 5142   Po wpo 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-ral 3057  df-dif 3947  df-nul 4319  df-po 5584
This theorem is referenced by:  so0  5620  posn  5757  dfpo2  6294  ipo0  43858
  Copyright terms: Public domain W3C validator