![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > po0 | Structured version Visualization version GIF version |
Description: Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
po0 | ⊢ 𝑅 Po ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4504 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
2 | df-po 5578 | . 2 ⊢ (𝑅 Po ∅ ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝑅 Po ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3053 ∅c0 4314 class class class wbr 5138 Po wpo 5576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-ral 3054 df-dif 3943 df-nul 4315 df-po 5578 |
This theorem is referenced by: so0 5614 posn 5751 dfpo2 6285 ipo0 43697 |
Copyright terms: Public domain | W3C validator |