| Step | Hyp | Ref
| Expression |
| 1 | | nfcsb1v 3903 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 |
| 2 | 1 | nfel1 2916 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 |
| 3 | | csbeq1a 3893 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑥⦌𝑋) |
| 4 | 3 | eleq1d 2820 |
. . . . . 6
⊢ (𝑥 = 𝑣 → (𝑋 ∈ 𝐵 ↔ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 5 | 2, 4 | rspc 3594 |
. . . . 5
⊢ (𝑣 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 6 | 5 | impcom 407 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) |
| 7 | | poirr 5578 |
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
| 8 | | df-br 5125 |
. . . . . 6
⊢ (𝑣𝑆𝑣 ↔ 〈𝑣, 𝑣〉 ∈ 𝑆) |
| 9 | | pofun.1 |
. . . . . . 7
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} |
| 10 | 9 | eleq2i 2827 |
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ 𝑆 ↔ 〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
| 11 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑅 |
| 12 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑌 |
| 13 | 1, 11, 12 | nfbr 5171 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 |
| 14 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋 |
| 15 | | vex 3468 |
. . . . . . 7
⊢ 𝑣 ∈ V |
| 16 | 3 | breq1d 5134 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅𝑌)) |
| 17 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 18 | | pofun.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑋 = 𝑌) |
| 19 | 17, 18 | csbie 3914 |
. . . . . . . . 9
⊢
⦋𝑦 /
𝑥⦌𝑋 = 𝑌 |
| 20 | | csbeq1 3882 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑣 / 𝑥⦌𝑋) |
| 21 | 19, 20 | eqtr3id 2785 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → 𝑌 = ⦋𝑣 / 𝑥⦌𝑋) |
| 22 | 21 | breq2d 5136 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋)) |
| 23 | 13, 14, 15, 15, 16, 22 | opelopabf 5525 |
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
| 24 | 8, 10, 23 | 3bitri 297 |
. . . . 5
⊢ (𝑣𝑆𝑣 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
| 25 | 7, 24 | sylnibr 329 |
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ 𝑣𝑆𝑣) |
| 26 | 6, 25 | sylan2 593 |
. . 3
⊢ ((𝑅 Po 𝐵 ∧ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴)) → ¬ 𝑣𝑆𝑣) |
| 27 | 26 | anassrs 467 |
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ 𝑣 ∈ 𝐴) → ¬ 𝑣𝑆𝑣) |
| 28 | 5 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑣 ∈ 𝐴 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 29 | | nfcsb1v 3903 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 |
| 30 | 29 | nfel1 2916 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 |
| 31 | | csbeq1a 3893 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑥⦌𝑋) |
| 32 | 31 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋 ∈ 𝐵 ↔ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 33 | 30, 32 | rspc 3594 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 34 | 33 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑤 ∈ 𝐴 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 35 | | nfcsb1v 3903 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 |
| 36 | 35 | nfel1 2916 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵 |
| 37 | | csbeq1a 3893 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
| 38 | 37 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑋 ∈ 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 39 | 36, 38 | rspc 3594 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 40 | 39 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 41 | 28, 34, 40 | 3anim123d 1445 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → ((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵))) |
| 42 | 41 | imp 406 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 43 | 42 | adantll 714 |
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
| 44 | | potr 5579 |
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) → ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
| 45 | | df-br 5125 |
. . . . . . 7
⊢ (𝑣𝑆𝑤 ↔ 〈𝑣, 𝑤〉 ∈ 𝑆) |
| 46 | 9 | eleq2i 2827 |
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ 𝑆 ↔ 〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
| 47 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 |
| 48 | | vex 3468 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 49 | | csbeq1 3882 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑤 / 𝑥⦌𝑋) |
| 50 | 19, 49 | eqtr3id 2785 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → 𝑌 = ⦋𝑤 / 𝑥⦌𝑋) |
| 51 | 50 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋)) |
| 52 | 13, 47, 15, 48, 16, 51 | opelopabf 5525 |
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) |
| 53 | 45, 46, 52 | 3bitri 297 |
. . . . . 6
⊢ (𝑣𝑆𝑤 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) |
| 54 | | df-br 5125 |
. . . . . . 7
⊢ (𝑤𝑆𝑧 ↔ 〈𝑤, 𝑧〉 ∈ 𝑆) |
| 55 | 9 | eleq2i 2827 |
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ 𝑆 ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
| 56 | 29, 11, 12 | nfbr 5171 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 |
| 57 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 |
| 58 | | vex 3468 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 59 | 31 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅𝑌)) |
| 60 | | csbeq1 3882 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
| 61 | 19, 60 | eqtr3id 2785 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → 𝑌 = ⦋𝑧 / 𝑥⦌𝑋) |
| 62 | 61 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
| 63 | 56, 57, 48, 58, 59, 62 | opelopabf 5525 |
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
| 64 | 54, 55, 63 | 3bitri 297 |
. . . . . 6
⊢ (𝑤𝑆𝑧 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
| 65 | 53, 64 | anbi12i 628 |
. . . . 5
⊢ ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) ↔ (⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
| 66 | | df-br 5125 |
. . . . . 6
⊢ (𝑣𝑆𝑧 ↔ 〈𝑣, 𝑧〉 ∈ 𝑆) |
| 67 | 9 | eleq2i 2827 |
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 ↔ 〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
| 68 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 |
| 69 | 61 | breq2d 5136 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
| 70 | 13, 68, 15, 58, 16, 69 | opelopabf 5525 |
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
| 71 | 66, 67, 70 | 3bitri 297 |
. . . . 5
⊢ (𝑣𝑆𝑧 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
| 72 | 44, 65, 71 | 3imtr4g 296 |
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
| 73 | 72 | adantlr 715 |
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
| 74 | 43, 73 | syldan 591 |
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
| 75 | 27, 74 | ispod 5575 |
1
⊢ ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) → 𝑆 Po 𝐴) |