Step | Hyp | Ref
| Expression |
1 | | nfcsb1v 3815 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 |
2 | 1 | nfel1 2915 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 |
3 | | csbeq1a 3805 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑥⦌𝑋) |
4 | 3 | eleq1d 2817 |
. . . . . 6
⊢ (𝑥 = 𝑣 → (𝑋 ∈ 𝐵 ↔ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
5 | 2, 4 | rspc 3515 |
. . . . 5
⊢ (𝑣 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
6 | 5 | impcom 411 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) |
7 | | poirr 5455 |
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
8 | | df-br 5032 |
. . . . . 6
⊢ (𝑣𝑆𝑣 ↔ 〈𝑣, 𝑣〉 ∈ 𝑆) |
9 | | pofun.1 |
. . . . . . 7
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} |
10 | 9 | eleq2i 2824 |
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ 𝑆 ↔ 〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
11 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑅 |
12 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑌 |
13 | 1, 11, 12 | nfbr 5078 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 |
14 | | nfv 1920 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋 |
15 | | vex 3402 |
. . . . . . 7
⊢ 𝑣 ∈ V |
16 | 3 | breq1d 5041 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅𝑌)) |
17 | | vex 3402 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
18 | | pofun.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑋 = 𝑌) |
19 | 17, 18 | csbie 3826 |
. . . . . . . . 9
⊢
⦋𝑦 /
𝑥⦌𝑋 = 𝑌 |
20 | | csbeq1 3794 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑣 / 𝑥⦌𝑋) |
21 | 19, 20 | eqtr3id 2787 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → 𝑌 = ⦋𝑣 / 𝑥⦌𝑋) |
22 | 21 | breq2d 5043 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋)) |
23 | 13, 14, 15, 15, 16, 22 | opelopabf 5401 |
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
24 | 8, 10, 23 | 3bitri 300 |
. . . . 5
⊢ (𝑣𝑆𝑣 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) |
25 | 7, 24 | sylnibr 332 |
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ 𝑣𝑆𝑣) |
26 | 6, 25 | sylan2 596 |
. . 3
⊢ ((𝑅 Po 𝐵 ∧ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴)) → ¬ 𝑣𝑆𝑣) |
27 | 26 | anassrs 471 |
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ 𝑣 ∈ 𝐴) → ¬ 𝑣𝑆𝑣) |
28 | 5 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑣 ∈ 𝐴 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) |
29 | | nfcsb1v 3815 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 |
30 | 29 | nfel1 2915 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 |
31 | | csbeq1a 3805 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑥⦌𝑋) |
32 | 31 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋 ∈ 𝐵 ↔ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
33 | 30, 32 | rspc 3515 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
34 | 33 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑤 ∈ 𝐴 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) |
35 | | nfcsb1v 3815 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 |
36 | 35 | nfel1 2915 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵 |
37 | | csbeq1a 3805 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
38 | 37 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑋 ∈ 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
39 | 36, 38 | rspc 3515 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
40 | 39 | com12 32 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
41 | 28, 34, 40 | 3anim123d 1444 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → ((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵))) |
42 | 41 | imp 410 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
43 | 42 | adantll 714 |
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) |
44 | | potr 5456 |
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) → ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
45 | | df-br 5032 |
. . . . . . 7
⊢ (𝑣𝑆𝑤 ↔ 〈𝑣, 𝑤〉 ∈ 𝑆) |
46 | 9 | eleq2i 2824 |
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ 𝑆 ↔ 〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
47 | | nfv 1920 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 |
48 | | vex 3402 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
49 | | csbeq1 3794 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑤 / 𝑥⦌𝑋) |
50 | 19, 49 | eqtr3id 2787 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → 𝑌 = ⦋𝑤 / 𝑥⦌𝑋) |
51 | 50 | breq2d 5043 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋)) |
52 | 13, 47, 15, 48, 16, 51 | opelopabf 5401 |
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) |
53 | 45, 46, 52 | 3bitri 300 |
. . . . . 6
⊢ (𝑣𝑆𝑤 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) |
54 | | df-br 5032 |
. . . . . . 7
⊢ (𝑤𝑆𝑧 ↔ 〈𝑤, 𝑧〉 ∈ 𝑆) |
55 | 9 | eleq2i 2824 |
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ 𝑆 ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
56 | 29, 11, 12 | nfbr 5078 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 |
57 | | nfv 1920 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 |
58 | | vex 3402 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
59 | 31 | breq1d 5041 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅𝑌)) |
60 | | csbeq1 3794 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
61 | 19, 60 | eqtr3id 2787 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → 𝑌 = ⦋𝑧 / 𝑥⦌𝑋) |
62 | 61 | breq2d 5043 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
63 | 56, 57, 48, 58, 59, 62 | opelopabf 5401 |
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
64 | 54, 55, 63 | 3bitri 300 |
. . . . . 6
⊢ (𝑤𝑆𝑧 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
65 | 53, 64 | anbi12i 630 |
. . . . 5
⊢ ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) ↔ (⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
66 | | df-br 5032 |
. . . . . 6
⊢ (𝑣𝑆𝑧 ↔ 〈𝑣, 𝑧〉 ∈ 𝑆) |
67 | 9 | eleq2i 2824 |
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 ↔ 〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) |
68 | | nfv 1920 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 |
69 | 61 | breq2d 5043 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) |
70 | 13, 68, 15, 58, 16, 69 | opelopabf 5401 |
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
71 | 66, 67, 70 | 3bitri 300 |
. . . . 5
⊢ (𝑣𝑆𝑧 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) |
72 | 44, 65, 71 | 3imtr4g 299 |
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
73 | 72 | adantlr 715 |
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
74 | 43, 73 | syldan 594 |
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) |
75 | 27, 74 | ispod 5452 |
1
⊢ ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) → 𝑆 Po 𝐴) |