MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pofun Structured version   Visualization version   GIF version

Theorem pofun 5187
Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
Hypotheses
Ref Expression
pofun.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌}
pofun.2 (𝑥 = 𝑦𝑋 = 𝑌)
Assertion
Ref Expression
pofun ((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) → 𝑆 Po 𝐴)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝑋   𝑥,𝑌   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑆(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)

Proof of Theorem pofun
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3698 . . . . . . 7 𝑥𝑣 / 𝑥𝑋
21nfel1 2928 . . . . . 6 𝑥𝑣 / 𝑥𝑋𝐵
3 csbeq1a 3691 . . . . . . 7 (𝑥 = 𝑣𝑋 = 𝑣 / 𝑥𝑋)
43eleq1d 2835 . . . . . 6 (𝑥 = 𝑣 → (𝑋𝐵𝑣 / 𝑥𝑋𝐵))
52, 4rspc 3454 . . . . 5 (𝑣𝐴 → (∀𝑥𝐴 𝑋𝐵𝑣 / 𝑥𝑋𝐵))
65impcom 394 . . . 4 ((∀𝑥𝐴 𝑋𝐵𝑣𝐴) → 𝑣 / 𝑥𝑋𝐵)
7 poirr 5182 . . . . 5 ((𝑅 Po 𝐵𝑣 / 𝑥𝑋𝐵) → ¬ 𝑣 / 𝑥𝑋𝑅𝑣 / 𝑥𝑋)
8 df-br 4788 . . . . . 6 (𝑣𝑆𝑣 ↔ ⟨𝑣, 𝑣⟩ ∈ 𝑆)
9 pofun.1 . . . . . . 7 𝑆 = {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌}
109eleq2i 2842 . . . . . 6 (⟨𝑣, 𝑣⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌})
11 nfcv 2913 . . . . . . . 8 𝑥𝑅
12 nfcv 2913 . . . . . . . 8 𝑥𝑌
131, 11, 12nfbr 4834 . . . . . . 7 𝑥𝑣 / 𝑥𝑋𝑅𝑌
14 nfv 1995 . . . . . . 7 𝑦𝑣 / 𝑥𝑋𝑅𝑣 / 𝑥𝑋
15 vex 3354 . . . . . . 7 𝑣 ∈ V
163breq1d 4797 . . . . . . 7 (𝑥 = 𝑣 → (𝑋𝑅𝑌𝑣 / 𝑥𝑋𝑅𝑌))
17 vex 3354 . . . . . . . . . 10 𝑦 ∈ V
18 pofun.2 . . . . . . . . . 10 (𝑥 = 𝑦𝑋 = 𝑌)
1917, 18csbie 3708 . . . . . . . . 9 𝑦 / 𝑥𝑋 = 𝑌
20 csbeq1 3685 . . . . . . . . 9 (𝑦 = 𝑣𝑦 / 𝑥𝑋 = 𝑣 / 𝑥𝑋)
2119, 20syl5eqr 2819 . . . . . . . 8 (𝑦 = 𝑣𝑌 = 𝑣 / 𝑥𝑋)
2221breq2d 4799 . . . . . . 7 (𝑦 = 𝑣 → (𝑣 / 𝑥𝑋𝑅𝑌𝑣 / 𝑥𝑋𝑅𝑣 / 𝑥𝑋))
2313, 14, 15, 15, 16, 22opelopabf 5134 . . . . . 6 (⟨𝑣, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌} ↔ 𝑣 / 𝑥𝑋𝑅𝑣 / 𝑥𝑋)
248, 10, 233bitri 286 . . . . 5 (𝑣𝑆𝑣𝑣 / 𝑥𝑋𝑅𝑣 / 𝑥𝑋)
257, 24sylnibr 318 . . . 4 ((𝑅 Po 𝐵𝑣 / 𝑥𝑋𝐵) → ¬ 𝑣𝑆𝑣)
266, 25sylan2 580 . . 3 ((𝑅 Po 𝐵 ∧ (∀𝑥𝐴 𝑋𝐵𝑣𝐴)) → ¬ 𝑣𝑆𝑣)
2726anassrs 453 . 2 (((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) ∧ 𝑣𝐴) → ¬ 𝑣𝑆𝑣)
285com12 32 . . . . . 6 (∀𝑥𝐴 𝑋𝐵 → (𝑣𝐴𝑣 / 𝑥𝑋𝐵))
29 nfcsb1v 3698 . . . . . . . . 9 𝑥𝑤 / 𝑥𝑋
3029nfel1 2928 . . . . . . . 8 𝑥𝑤 / 𝑥𝑋𝐵
31 csbeq1a 3691 . . . . . . . . 9 (𝑥 = 𝑤𝑋 = 𝑤 / 𝑥𝑋)
3231eleq1d 2835 . . . . . . . 8 (𝑥 = 𝑤 → (𝑋𝐵𝑤 / 𝑥𝑋𝐵))
3330, 32rspc 3454 . . . . . . 7 (𝑤𝐴 → (∀𝑥𝐴 𝑋𝐵𝑤 / 𝑥𝑋𝐵))
3433com12 32 . . . . . 6 (∀𝑥𝐴 𝑋𝐵 → (𝑤𝐴𝑤 / 𝑥𝑋𝐵))
35 nfcsb1v 3698 . . . . . . . . 9 𝑥𝑧 / 𝑥𝑋
3635nfel1 2928 . . . . . . . 8 𝑥𝑧 / 𝑥𝑋𝐵
37 csbeq1a 3691 . . . . . . . . 9 (𝑥 = 𝑧𝑋 = 𝑧 / 𝑥𝑋)
3837eleq1d 2835 . . . . . . . 8 (𝑥 = 𝑧 → (𝑋𝐵𝑧 / 𝑥𝑋𝐵))
3936, 38rspc 3454 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝑋𝐵𝑧 / 𝑥𝑋𝐵))
4039com12 32 . . . . . 6 (∀𝑥𝐴 𝑋𝐵 → (𝑧𝐴𝑧 / 𝑥𝑋𝐵))
4128, 34, 403anim123d 1554 . . . . 5 (∀𝑥𝐴 𝑋𝐵 → ((𝑣𝐴𝑤𝐴𝑧𝐴) → (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵)))
4241imp 393 . . . 4 ((∀𝑥𝐴 𝑋𝐵 ∧ (𝑣𝐴𝑤𝐴𝑧𝐴)) → (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵))
4342adantll 693 . . 3 (((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) ∧ (𝑣𝐴𝑤𝐴𝑧𝐴)) → (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵))
44 potr 5183 . . . . 5 ((𝑅 Po 𝐵 ∧ (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵)) → ((𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋) → 𝑣 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋))
45 df-br 4788 . . . . . . 7 (𝑣𝑆𝑤 ↔ ⟨𝑣, 𝑤⟩ ∈ 𝑆)
469eleq2i 2842 . . . . . . 7 (⟨𝑣, 𝑤⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌})
47 nfv 1995 . . . . . . . 8 𝑦𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋
48 vex 3354 . . . . . . . 8 𝑤 ∈ V
49 csbeq1 3685 . . . . . . . . . 10 (𝑦 = 𝑤𝑦 / 𝑥𝑋 = 𝑤 / 𝑥𝑋)
5019, 49syl5eqr 2819 . . . . . . . . 9 (𝑦 = 𝑤𝑌 = 𝑤 / 𝑥𝑋)
5150breq2d 4799 . . . . . . . 8 (𝑦 = 𝑤 → (𝑣 / 𝑥𝑋𝑅𝑌𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋))
5213, 47, 15, 48, 16, 51opelopabf 5134 . . . . . . 7 (⟨𝑣, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌} ↔ 𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋)
5345, 46, 523bitri 286 . . . . . 6 (𝑣𝑆𝑤𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋)
54 df-br 4788 . . . . . . 7 (𝑤𝑆𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑆)
559eleq2i 2842 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌})
5629, 11, 12nfbr 4834 . . . . . . . 8 𝑥𝑤 / 𝑥𝑋𝑅𝑌
57 nfv 1995 . . . . . . . 8 𝑦𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋
58 vex 3354 . . . . . . . 8 𝑧 ∈ V
5931breq1d 4797 . . . . . . . 8 (𝑥 = 𝑤 → (𝑋𝑅𝑌𝑤 / 𝑥𝑋𝑅𝑌))
60 csbeq1 3685 . . . . . . . . . 10 (𝑦 = 𝑧𝑦 / 𝑥𝑋 = 𝑧 / 𝑥𝑋)
6119, 60syl5eqr 2819 . . . . . . . . 9 (𝑦 = 𝑧𝑌 = 𝑧 / 𝑥𝑋)
6261breq2d 4799 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤 / 𝑥𝑋𝑅𝑌𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋))
6356, 57, 48, 58, 59, 62opelopabf 5134 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌} ↔ 𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋)
6454, 55, 633bitri 286 . . . . . 6 (𝑤𝑆𝑧𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋)
6553, 64anbi12i 612 . . . . 5 ((𝑣𝑆𝑤𝑤𝑆𝑧) ↔ (𝑣 / 𝑥𝑋𝑅𝑤 / 𝑥𝑋𝑤 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋))
66 df-br 4788 . . . . . 6 (𝑣𝑆𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ 𝑆)
679eleq2i 2842 . . . . . 6 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌})
68 nfv 1995 . . . . . . 7 𝑦𝑣 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋
6961breq2d 4799 . . . . . . 7 (𝑦 = 𝑧 → (𝑣 / 𝑥𝑋𝑅𝑌𝑣 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋))
7013, 68, 15, 58, 16, 69opelopabf 5134 . . . . . 6 (⟨𝑣, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌} ↔ 𝑣 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋)
7166, 67, 703bitri 286 . . . . 5 (𝑣𝑆𝑧𝑣 / 𝑥𝑋𝑅𝑧 / 𝑥𝑋)
7244, 65, 713imtr4g 285 . . . 4 ((𝑅 Po 𝐵 ∧ (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵)) → ((𝑣𝑆𝑤𝑤𝑆𝑧) → 𝑣𝑆𝑧))
7372adantlr 694 . . 3 (((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) ∧ (𝑣 / 𝑥𝑋𝐵𝑤 / 𝑥𝑋𝐵𝑧 / 𝑥𝑋𝐵)) → ((𝑣𝑆𝑤𝑤𝑆𝑧) → 𝑣𝑆𝑧))
7443, 73syldan 579 . 2 (((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) ∧ (𝑣𝐴𝑤𝐴𝑧𝐴)) → ((𝑣𝑆𝑤𝑤𝑆𝑧) → 𝑣𝑆𝑧))
7527, 74ispod 5179 1 ((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) → 𝑆 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  csb 3682  cop 4323   class class class wbr 4787  {copab 4847   Po wpo 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-po 5171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator