| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > so0 | Structured version Visualization version GIF version | ||
| Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| so0 | ⊢ 𝑅 Or ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 5548 | . 2 ⊢ 𝑅 Po ∅ | |
| 2 | ral0 4466 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) | |
| 3 | df-so 5532 | . 2 ⊢ (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝑅 Or ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 ∀wral 3044 ∅c0 4286 class class class wbr 5095 Po wpo 5529 Or wor 5530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-dif 3908 df-nul 4287 df-po 5531 df-so 5532 |
| This theorem is referenced by: we0 5618 wemapso2 9464 |
| Copyright terms: Public domain | W3C validator |