![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > so0 | Structured version Visualization version GIF version |
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
so0 | ⊢ 𝑅 Or ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | po0 5604 | . 2 ⊢ 𝑅 Po ∅ | |
2 | ral0 4511 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) | |
3 | df-so 5588 | . 2 ⊢ (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
4 | 1, 2, 3 | mpbir2an 709 | 1 ⊢ 𝑅 Or ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1086 ∀wral 3061 ∅c0 4321 class class class wbr 5147 Po wpo 5585 Or wor 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-ral 3062 df-dif 3950 df-nul 4322 df-po 5587 df-so 5588 |
This theorem is referenced by: we0 5670 wemapso2 9544 |
Copyright terms: Public domain | W3C validator |