MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posn Structured version   Visualization version   GIF version

Theorem posn 5639
Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
posn (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem posn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 5492 . . . . . 6 𝑅 Po ∅
2 snprc 4655 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
3 poeq2 5480 . . . . . . 7 ({𝐴} = ∅ → (𝑅 Po {𝐴} ↔ 𝑅 Po ∅))
42, 3sylbi 219 . . . . . 6 𝐴 ∈ V → (𝑅 Po {𝐴} ↔ 𝑅 Po ∅))
51, 4mpbiri 260 . . . . 5 𝐴 ∈ V → 𝑅 Po {𝐴})
65adantl 484 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Po {𝐴})
7 brrelex1 5607 . . . . 5 ((Rel 𝑅𝐴𝑅𝐴) → 𝐴 ∈ V)
87stoic1a 1773 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴)
96, 82thd 267 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
109ex 415 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)))
11 df-po 5476 . . 3 (𝑅 Po {𝐴} ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
12 breq2 5072 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑦𝑅𝑧𝑦𝑅𝐴))
1312anbi2d 630 . . . . . . . . . 10 (𝑧 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝐴)))
14 breq2 5072 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑥𝑅𝑧𝑥𝑅𝐴))
1513, 14imbi12d 347 . . . . . . . . 9 (𝑧 = 𝐴 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)))
1615anbi2d 630 . . . . . . . 8 (𝑧 = 𝐴 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
1716ralsng 4615 . . . . . . 7 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
1817ralbidv 3199 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
19 simpl 485 . . . . . . . . . 10 ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝑦)
20 breq2 5072 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥𝑅𝑦𝑥𝑅𝐴))
2119, 20syl5ib 246 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))
2221biantrud 534 . . . . . . . 8 (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑥 ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
2322bicomd 225 . . . . . . 7 (𝑦 = 𝐴 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)) ↔ ¬ 𝑥𝑅𝑥))
2423ralsng 4615 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)) ↔ ¬ 𝑥𝑅𝑥))
2518, 24bitrd 281 . . . . 5 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ¬ 𝑥𝑅𝑥))
2625ralbidv 3199 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝑥𝑅𝑥))
27 breq12 5073 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
2827anidms 569 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
2928notbid 320 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐴𝑅𝐴))
3029ralsng 4615 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝑥𝑅𝑥 ↔ ¬ 𝐴𝑅𝐴))
3126, 30bitrd 281 . . 3 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ¬ 𝐴𝑅𝐴))
3211, 31syl5bb 285 . 2 (𝐴 ∈ V → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
3310, 32pm2.61d2 183 1 (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293  {csn 4569   class class class wbr 5068   Po wpo 5474  Rel wrel 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-po 5476  df-xp 5563  df-rel 5564
This theorem is referenced by:  sosn  5640
  Copyright terms: Public domain W3C validator