MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po2ne Structured version   Visualization version   GIF version

Theorem po2ne 5603
Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023.)
Assertion
Ref Expression
po2ne ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝑅𝐵) → 𝐴𝐵)

Proof of Theorem po2ne
StepHypRef Expression
1 breq1 5150 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑅𝐵𝐵𝑅𝐵))
2 poirr 5599 . . . . . . . . 9 ((𝑅 Po 𝑉𝐵𝑉) → ¬ 𝐵𝑅𝐵)
32adantrl 714 . . . . . . . 8 ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉)) → ¬ 𝐵𝑅𝐵)
43pm2.21d 121 . . . . . . 7 ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉)) → (𝐵𝑅𝐵𝐴𝐵))
54ex 413 . . . . . 6 (𝑅 Po 𝑉 → ((𝐴𝑉𝐵𝑉) → (𝐵𝑅𝐵𝐴𝐵)))
65com13 88 . . . . 5 (𝐵𝑅𝐵 → ((𝐴𝑉𝐵𝑉) → (𝑅 Po 𝑉𝐴𝐵)))
71, 6syl6bi 252 . . . 4 (𝐴 = 𝐵 → (𝐴𝑅𝐵 → ((𝐴𝑉𝐵𝑉) → (𝑅 Po 𝑉𝐴𝐵))))
87com24 95 . . 3 (𝐴 = 𝐵 → (𝑅 Po 𝑉 → ((𝐴𝑉𝐵𝑉) → (𝐴𝑅𝐵𝐴𝐵))))
983impd 1348 . 2 (𝐴 = 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝑅𝐵) → 𝐴𝐵))
10 ax-1 6 . 2 (𝐴𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝑅𝐵) → 𝐴𝐵))
119, 10pm2.61ine 3025 1 ((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝑅𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147   Po wpo 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-po 5587
This theorem is referenced by:  prproropf1olem1  46157
  Copyright terms: Public domain W3C validator