| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > po2ne | Structured version Visualization version GIF version | ||
| Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| po2ne | ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5122 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
| 2 | poirr 5573 | . . . . . . . . 9 ⊢ ((𝑅 Po 𝑉 ∧ 𝐵 ∈ 𝑉) → ¬ 𝐵𝑅𝐵) | |
| 3 | 2 | adantrl 716 | . . . . . . . 8 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ¬ 𝐵𝑅𝐵) |
| 4 | 3 | pm2.21d 121 | . . . . . . 7 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵)) |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵))) |
| 6 | 5 | com13 88 | . . . . 5 ⊢ (𝐵𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵))) |
| 7 | 1, 6 | biimtrdi 253 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵)))) |
| 8 | 7 | com24 95 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝑅𝐵 → 𝐴 ≠ 𝐵)))) |
| 9 | 8 | 3impd 1349 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) |
| 10 | ax-1 6 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) | |
| 11 | 9, 10 | pm2.61ine 3015 | 1 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 Po wpo 5559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-po 5561 |
| This theorem is referenced by: prproropf1olem1 47517 |
| Copyright terms: Public domain | W3C validator |