![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > po2ne | Structured version Visualization version GIF version |
Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023.) |
Ref | Expression |
---|---|
po2ne | ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
2 | poirr 5609 | . . . . . . . . 9 ⊢ ((𝑅 Po 𝑉 ∧ 𝐵 ∈ 𝑉) → ¬ 𝐵𝑅𝐵) | |
3 | 2 | adantrl 716 | . . . . . . . 8 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ¬ 𝐵𝑅𝐵) |
4 | 3 | pm2.21d 121 | . . . . . . 7 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵)) |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵))) |
6 | 5 | com13 88 | . . . . 5 ⊢ (𝐵𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵))) |
7 | 1, 6 | biimtrdi 253 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵)))) |
8 | 7 | com24 95 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝑅𝐵 → 𝐴 ≠ 𝐵)))) |
9 | 8 | 3impd 1347 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) |
10 | ax-1 6 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) | |
11 | 9, 10 | pm2.61ine 3023 | 1 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 Po wpo 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-po 5597 |
This theorem is referenced by: prproropf1olem1 47428 |
Copyright terms: Public domain | W3C validator |