Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > po2ne | Structured version Visualization version GIF version |
Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023.) |
Ref | Expression |
---|---|
po2ne | ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
2 | poirr 5506 | . . . . . . . . 9 ⊢ ((𝑅 Po 𝑉 ∧ 𝐵 ∈ 𝑉) → ¬ 𝐵𝑅𝐵) | |
3 | 2 | adantrl 712 | . . . . . . . 8 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ¬ 𝐵𝑅𝐵) |
4 | 3 | pm2.21d 121 | . . . . . . 7 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵)) |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵𝑅𝐵 → 𝐴 ≠ 𝐵))) |
6 | 5 | com13 88 | . . . . 5 ⊢ (𝐵𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵))) |
7 | 1, 6 | syl6bi 252 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑅 Po 𝑉 → 𝐴 ≠ 𝐵)))) |
8 | 7 | com24 95 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝑉 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝑅𝐵 → 𝐴 ≠ 𝐵)))) |
9 | 8 | 3impd 1346 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) |
10 | ax-1 6 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵)) | |
11 | 9, 10 | pm2.61ine 3027 | 1 ⊢ ((𝑅 Po 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴𝑅𝐵) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 Po wpo 5492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-po 5494 |
This theorem is referenced by: prproropf1olem1 44843 |
Copyright terms: Public domain | W3C validator |