| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | po0 5608 | . . . 4
⊢ 𝑅 Po ∅ | 
| 2 |  | res0 6000 | . . . . . . 7
⊢ ( I
↾ ∅) = ∅ | 
| 3 | 2 | ineq2i 4216 | . . . . . 6
⊢ (𝑅 ∩ ( I ↾ ∅)) =
(𝑅 ∩
∅) | 
| 4 |  | in0 4394 | . . . . . 6
⊢ (𝑅 ∩ ∅) =
∅ | 
| 5 | 3, 4 | eqtri 2764 | . . . . 5
⊢ (𝑅 ∩ ( I ↾ ∅)) =
∅ | 
| 6 |  | xp0 6177 | . . . . . . . . . 10
⊢ (𝐴 × ∅) =
∅ | 
| 7 | 6 | ineq2i 4216 | . . . . . . . . 9
⊢ (𝑅 ∩ (𝐴 × ∅)) = (𝑅 ∩ ∅) | 
| 8 | 7, 4 | eqtri 2764 | . . . . . . . 8
⊢ (𝑅 ∩ (𝐴 × ∅)) =
∅ | 
| 9 | 8 | coeq2i 5870 | . . . . . . 7
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) = ((𝑅 ∩ (𝐴 × 𝐴)) ∘ ∅) | 
| 10 |  | co02 6279 | . . . . . . 7
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ ∅) =
∅ | 
| 11 | 9, 10 | eqtri 2764 | . . . . . 6
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) =
∅ | 
| 12 |  | 0ss 4399 | . . . . . 6
⊢ ∅
⊆ 𝑅 | 
| 13 | 11, 12 | eqsstri 4029 | . . . . 5
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅 | 
| 14 | 5, 13 | pm3.2i 470 | . . . 4
⊢ ((𝑅 ∩ ( I ↾ ∅)) =
∅ ∧ ((𝑅 ∩
(𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅) | 
| 15 | 1, 14 | 2th 264 | . . 3
⊢ (𝑅 Po ∅ ↔ ((𝑅 ∩ ( I ↾ ∅)) =
∅ ∧ ((𝑅 ∩
(𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)) | 
| 16 |  | poeq2 5595 | . . . 4
⊢ (𝐴 = ∅ → (𝑅 Po 𝐴 ↔ 𝑅 Po ∅)) | 
| 17 |  | reseq2 5991 | . . . . . . 7
⊢ (𝐴 = ∅ → ( I ↾
𝐴) = ( I ↾
∅)) | 
| 18 | 17 | ineq2d 4219 | . . . . . 6
⊢ (𝐴 = ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = (𝑅 ∩ ( I ↾
∅))) | 
| 19 | 18 | eqeq1d 2738 | . . . . 5
⊢ (𝐴 = ∅ → ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔ (𝑅 ∩ ( I ↾ ∅)) =
∅)) | 
| 20 |  | xpeq2 5705 | . . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | 
| 21 | 20 | ineq2d 4219 | . . . . . . 7
⊢ (𝐴 = ∅ → (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × ∅))) | 
| 22 | 21 | coeq2d 5872 | . . . . . 6
⊢ (𝐴 = ∅ → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) = ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅)))) | 
| 23 | 22 | sseq1d 4014 | . . . . 5
⊢ (𝐴 = ∅ → (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)) | 
| 24 | 19, 23 | anbi12d 632 | . . . 4
⊢ (𝐴 = ∅ → (((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) ↔ ((𝑅 ∩ ( I ↾ ∅)) = ∅ ∧
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅))) | 
| 25 | 16, 24 | bibi12d 345 | . . 3
⊢ (𝐴 = ∅ → ((𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) ↔ (𝑅 Po ∅ ↔ ((𝑅 ∩ ( I ↾ ∅)) = ∅ ∧
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)))) | 
| 26 | 15, 25 | mpbiri 258 | . 2
⊢ (𝐴 = ∅ → (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))) | 
| 27 |  | r19.28zv 4500 | . . . . . . 7
⊢ (𝐴 ≠ ∅ →
(∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 28 | 27 | ralbidv 3177 | . . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 29 |  | r19.28zv 4500 | . . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 30 | 28, 29 | bitrd 279 | . . . . 5
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 31 | 30 | ralbidv 3177 | . . . 4
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 32 |  | r19.26 3110 | . . . 4
⊢
(∀𝑥 ∈
𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 33 | 31, 32 | bitrdi 287 | . . 3
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | 
| 34 |  | df-po 5591 | . . 3
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 35 |  | disj 4449 | . . . . 5
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔
∀𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴)) | 
| 36 |  | df-ral 3061 | . . . . 5
⊢
(∀𝑤 ∈
𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴) ↔ ∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) | 
| 37 |  | opex 5468 | . . . . . . . . . 10
⊢
〈𝑥, 𝑥〉 ∈ V | 
| 38 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ 𝑅 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅)) | 
| 39 |  | df-br 5143 | . . . . . . . . . . . 12
⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | 
| 40 | 38, 39 | bitr4di 289 | . . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) | 
| 41 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴))) | 
| 42 |  | opelidres 6008 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ V → (〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴)) | 
| 43 | 42 | elv 3484 | . . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴) | 
| 44 | 41, 43 | bitrdi 287 | . . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴)) | 
| 45 | 44 | notbid 318 | . . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (¬ 𝑤 ∈ ( I ↾ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴)) | 
| 46 | 40, 45 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑤 = 〈𝑥, 𝑥〉 → ((𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑥 → ¬ 𝑥 ∈ 𝐴))) | 
| 47 | 37, 46 | spcv 3604 | . . . . . . . . 9
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → (𝑥𝑅𝑥 → ¬ 𝑥 ∈ 𝐴)) | 
| 48 | 47 | con2d 134 | . . . . . . . 8
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → (𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) | 
| 49 | 48 | alrimiv 1926 | . . . . . . 7
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) | 
| 50 |  | relres 6022 | . . . . . . . . . . . 12
⊢ Rel ( I
↾ 𝐴) | 
| 51 |  | elrel 5807 | . . . . . . . . . . . 12
⊢ ((Rel ( I
↾ 𝐴) ∧ 𝑤 ∈ ( I ↾ 𝐴)) → ∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉) | 
| 52 | 50, 51 | mpan 690 | . . . . . . . . . . 11
⊢ (𝑤 ∈ ( I ↾ 𝐴) → ∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉) | 
| 53 | 52 | ancri 549 | . . . . . . . . . 10
⊢ (𝑤 ∈ ( I ↾ 𝐴) → (∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 ∧ 𝑤 ∈ ( I ↾ 𝐴))) | 
| 54 |  | eleq1 2828 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 55 |  | breq12 5147 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥𝑅𝑥 ↔ 𝑦𝑅𝑦)) | 
| 56 | 55 | anidms 566 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥𝑅𝑥 ↔ 𝑦𝑅𝑦)) | 
| 57 | 56 | notbid 318 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑦𝑅𝑦)) | 
| 58 | 54, 57 | imbi12d 344 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) ↔ (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦))) | 
| 59 | 58 | spvv 1995 | . . . . . . . . . . . . . 14
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦)) | 
| 60 |  | breq2 5146 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑦 ↔ 𝑦𝑅𝑧)) | 
| 61 | 60 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (¬ 𝑦𝑅𝑦 ↔ ¬ 𝑦𝑅𝑧)) | 
| 62 | 61 | imbi2d 340 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) ↔ (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑧))) | 
| 63 | 62 | biimpcd 249 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) → (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑧))) | 
| 64 | 63 | impcomd 411 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) → ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧)) | 
| 65 | 59, 64 | syl 17 | . . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧)) | 
| 66 |  | eleq1 2828 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴))) | 
| 67 |  | vex 3483 | . . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V | 
| 68 | 67 | brresi 6005 | . . . . . . . . . . . . . . . 16
⊢ (𝑦( I ↾ 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧)) | 
| 69 |  | df-br 5143 | . . . . . . . . . . . . . . . 16
⊢ (𝑦( I ↾ 𝐴)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴)) | 
| 70 | 67 | ideq 5862 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) | 
| 71 | 70 | anbi2i 623 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧)) | 
| 72 | 68, 69, 71 | 3bitr3ri 302 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴)) | 
| 73 | 66, 72 | bitr4di 289 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧))) | 
| 74 |  | eleq1 2828 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝑅 ↔ 〈𝑦, 𝑧〉 ∈ 𝑅)) | 
| 75 |  | df-br 5143 | . . . . . . . . . . . . . . . 16
⊢ (𝑦𝑅𝑧 ↔ 〈𝑦, 𝑧〉 ∈ 𝑅) | 
| 76 | 74, 75 | bitr4di 289 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝑅 ↔ 𝑦𝑅𝑧)) | 
| 77 | 76 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (¬ 𝑤 ∈ 𝑅 ↔ ¬ 𝑦𝑅𝑧)) | 
| 78 | 73, 77 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑤 = 〈𝑦, 𝑧〉 → ((𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧))) | 
| 79 | 65, 78 | syl5ibrcom 247 | . . . . . . . . . . . 12
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅))) | 
| 80 | 79 | exlimdvv 1933 | . . . . . . . . . . 11
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅))) | 
| 81 | 80 | impd 410 | . . . . . . . . . 10
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ((∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 ∧ 𝑤 ∈ ( I ↾ 𝐴)) → ¬ 𝑤 ∈ 𝑅)) | 
| 82 | 53, 81 | syl5 34 | . . . . . . . . 9
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅)) | 
| 83 | 82 | con2d 134 | . . . . . . . 8
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) | 
| 84 | 83 | alrimiv 1926 | . . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) | 
| 85 | 49, 84 | impbii 209 | . . . . . 6
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) | 
| 86 |  | df-ral 3061 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) | 
| 87 | 85, 86 | bitr4i 278 | . . . . 5
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) | 
| 88 | 35, 36, 87 | 3bitri 297 | . . . 4
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔
∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) | 
| 89 |  | ralcom 3288 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 90 |  | r19.23v 3182 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 91 | 90 | ralbii 3092 | . . . . . . 7
⊢
(∀𝑧 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 92 | 89, 91 | bitri 275 | . . . . . 6
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 93 | 92 | ralbii 3092 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 94 |  | brin 5194 | . . . . . . . . . . . 12
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦)) | 
| 95 |  | brin 5194 | . . . . . . . . . . . 12
⊢ (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧 ↔ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) | 
| 96 | 94, 95 | anbi12i 628 | . . . . . . . . . . 11
⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧))) | 
| 97 |  | an4 656 | . . . . . . . . . . . 12
⊢ (((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ (𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧))) | 
| 98 |  | ancom 460 | . . . . . . . . . . . 12
⊢ (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ (𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) | 
| 99 |  | ancom 460 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | 
| 100 | 99 | anbi1i 624 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) | 
| 101 |  | brxp 5733 | . . . . . . . . . . . . . . 15
⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | 
| 102 |  | brxp 5733 | . . . . . . . . . . . . . . 15
⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | 
| 103 | 101, 102 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) | 
| 104 |  | anandi 676 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) | 
| 105 | 100, 103,
104 | 3bitr4i 303 | . . . . . . . . . . . . 13
⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ↔ (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) | 
| 106 | 105 | anbi1i 624 | . . . . . . . . . . . 12
⊢ (((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) | 
| 107 | 97, 98, 106 | 3bitri 297 | . . . . . . . . . . 11
⊢ (((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) | 
| 108 |  | anass 468 | . . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) | 
| 109 | 96, 107, 108 | 3bitri 297 | . . . . . . . . . 10
⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ (𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) | 
| 110 | 109 | exbii 1847 | . . . . . . . . 9
⊢
(∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) | 
| 111 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑥 ∈ V | 
| 112 | 111, 67 | brco 5880 | . . . . . . . . . 10
⊢ (𝑥((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))𝑧 ↔ ∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)) | 
| 113 |  | df-br 5143 | . . . . . . . . . 10
⊢ (𝑥((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) | 
| 114 | 112, 113 | bitr3i 277 | . . . . . . . . 9
⊢
(∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) | 
| 115 |  | df-rex 3070 | . . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) | 
| 116 |  | r19.42v 3190 | . . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) | 
| 117 | 115, 116 | bitr3i 277 | . . . . . . . . 9
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) | 
| 118 | 110, 114,
117 | 3bitr3ri 302 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) | 
| 119 |  | df-br 5143 | . . . . . . . 8
⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) | 
| 120 | 118, 119 | imbi12i 350 | . . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ (〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) | 
| 121 | 120 | 2albii 1819 | . . . . . 6
⊢
(∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) | 
| 122 |  | r2al 3194 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 123 |  | impexp 450 | . . . . . . . 8
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 124 | 123 | 2albii 1819 | . . . . . . 7
⊢
(∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 125 | 122, 124 | bitr4i 278 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧)) | 
| 126 |  | relco 6125 | . . . . . . 7
⊢ Rel
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) | 
| 127 |  | ssrel 5791 | . . . . . . 7
⊢ (Rel
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅))) | 
| 128 | 126, 127 | ax-mp 5 | . . . . . 6
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) | 
| 129 | 121, 125,
128 | 3bitr4i 303 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) | 
| 130 | 93, 129 | bitr2i 276 | . . . 4
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 131 | 88, 130 | anbi12i 628 | . . 3
⊢ (((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 132 | 33, 34, 131 | 3bitr4g 314 | . 2
⊢ (𝐴 ≠ ∅ → (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))) | 
| 133 | 26, 132 | pm2.61ine 3024 | 1
⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) |