Step | Hyp | Ref
| Expression |
1 | | po0 5520 |
. . . 4
⊢ 𝑅 Po ∅ |
2 | | res0 5895 |
. . . . . . 7
⊢ ( I
↾ ∅) = ∅ |
3 | 2 | ineq2i 4143 |
. . . . . 6
⊢ (𝑅 ∩ ( I ↾ ∅)) =
(𝑅 ∩
∅) |
4 | | in0 4325 |
. . . . . 6
⊢ (𝑅 ∩ ∅) =
∅ |
5 | 3, 4 | eqtri 2766 |
. . . . 5
⊢ (𝑅 ∩ ( I ↾ ∅)) =
∅ |
6 | | xp0 6061 |
. . . . . . . . . 10
⊢ (𝐴 × ∅) =
∅ |
7 | 6 | ineq2i 4143 |
. . . . . . . . 9
⊢ (𝑅 ∩ (𝐴 × ∅)) = (𝑅 ∩ ∅) |
8 | 7, 4 | eqtri 2766 |
. . . . . . . 8
⊢ (𝑅 ∩ (𝐴 × ∅)) =
∅ |
9 | 8 | coeq2i 5769 |
. . . . . . 7
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) = ((𝑅 ∩ (𝐴 × 𝐴)) ∘ ∅) |
10 | | co02 6164 |
. . . . . . 7
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ ∅) =
∅ |
11 | 9, 10 | eqtri 2766 |
. . . . . 6
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) =
∅ |
12 | | 0ss 4330 |
. . . . . 6
⊢ ∅
⊆ 𝑅 |
13 | 11, 12 | eqsstri 3955 |
. . . . 5
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅 |
14 | 5, 13 | pm3.2i 471 |
. . . 4
⊢ ((𝑅 ∩ ( I ↾ ∅)) =
∅ ∧ ((𝑅 ∩
(𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅) |
15 | 1, 14 | 2th 263 |
. . 3
⊢ (𝑅 Po ∅ ↔ ((𝑅 ∩ ( I ↾ ∅)) =
∅ ∧ ((𝑅 ∩
(𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)) |
16 | | poeq2 5507 |
. . . 4
⊢ (𝐴 = ∅ → (𝑅 Po 𝐴 ↔ 𝑅 Po ∅)) |
17 | | reseq2 5886 |
. . . . . . 7
⊢ (𝐴 = ∅ → ( I ↾
𝐴) = ( I ↾
∅)) |
18 | 17 | ineq2d 4146 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = (𝑅 ∩ ( I ↾
∅))) |
19 | 18 | eqeq1d 2740 |
. . . . 5
⊢ (𝐴 = ∅ → ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔ (𝑅 ∩ ( I ↾ ∅)) =
∅)) |
20 | | xpeq2 5610 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) |
21 | 20 | ineq2d 4146 |
. . . . . . 7
⊢ (𝐴 = ∅ → (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × ∅))) |
22 | 21 | coeq2d 5771 |
. . . . . 6
⊢ (𝐴 = ∅ → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) = ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅)))) |
23 | 22 | sseq1d 3952 |
. . . . 5
⊢ (𝐴 = ∅ → (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)) |
24 | 19, 23 | anbi12d 631 |
. . . 4
⊢ (𝐴 = ∅ → (((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) ↔ ((𝑅 ∩ ( I ↾ ∅)) = ∅ ∧
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅))) |
25 | 16, 24 | bibi12d 346 |
. . 3
⊢ (𝐴 = ∅ → ((𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) ↔ (𝑅 Po ∅ ↔ ((𝑅 ∩ ( I ↾ ∅)) = ∅ ∧
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × ∅))) ⊆ 𝑅)))) |
26 | 15, 25 | mpbiri 257 |
. 2
⊢ (𝐴 = ∅ → (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))) |
27 | | r19.28zv 4431 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ →
(∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
28 | 27 | ralbidv 3112 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
29 | | r19.28zv 4431 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
30 | 28, 29 | bitrd 278 |
. . . . 5
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
31 | 30 | ralbidv 3112 |
. . . 4
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
32 | | r19.26 3095 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (¬ 𝑥𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
33 | 31, 32 | bitrdi 287 |
. . 3
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
34 | | df-po 5503 |
. . 3
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
35 | | disj 4381 |
. . . . 5
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔
∀𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴)) |
36 | | df-ral 3069 |
. . . . 5
⊢
(∀𝑤 ∈
𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴) ↔ ∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) |
37 | | opex 5379 |
. . . . . . . . . 10
⊢
〈𝑥, 𝑥〉 ∈ V |
38 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ 𝑅 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅)) |
39 | | df-br 5075 |
. . . . . . . . . . . 12
⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) |
40 | 38, 39 | bitr4di 289 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
41 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴))) |
42 | | opelidres 5903 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ V → (〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
43 | 42 | elv 3438 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴) |
44 | 41, 43 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
45 | 44 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑥〉 → (¬ 𝑤 ∈ ( I ↾ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴)) |
46 | 40, 45 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑤 = 〈𝑥, 𝑥〉 → ((𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑥 → ¬ 𝑥 ∈ 𝐴))) |
47 | 37, 46 | spcv 3544 |
. . . . . . . . 9
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → (𝑥𝑅𝑥 → ¬ 𝑥 ∈ 𝐴)) |
48 | 47 | con2d 134 |
. . . . . . . 8
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → (𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) |
49 | 48 | alrimiv 1930 |
. . . . . . 7
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) → ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) |
50 | | relres 5920 |
. . . . . . . . . . . 12
⊢ Rel ( I
↾ 𝐴) |
51 | | elrel 5708 |
. . . . . . . . . . . 12
⊢ ((Rel ( I
↾ 𝐴) ∧ 𝑤 ∈ ( I ↾ 𝐴)) → ∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉) |
52 | 50, 51 | mpan 687 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ( I ↾ 𝐴) → ∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉) |
53 | 52 | ancri 550 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ( I ↾ 𝐴) → (∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 ∧ 𝑤 ∈ ( I ↾ 𝐴))) |
54 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
55 | | breq12 5079 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥𝑅𝑥 ↔ 𝑦𝑅𝑦)) |
56 | 55 | anidms 567 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥𝑅𝑥 ↔ 𝑦𝑅𝑦)) |
57 | 56 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑦𝑅𝑦)) |
58 | 54, 57 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) ↔ (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦))) |
59 | 58 | spvv 2000 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦)) |
60 | | breq2 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑦 ↔ 𝑦𝑅𝑧)) |
61 | 60 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (¬ 𝑦𝑅𝑦 ↔ ¬ 𝑦𝑅𝑧)) |
62 | 61 | imbi2d 341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) ↔ (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑧))) |
63 | 62 | biimpcd 248 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) → (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑧))) |
64 | 63 | impcomd 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 → ¬ 𝑦𝑅𝑦) → ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧)) |
65 | 59, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧)) |
66 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴))) |
67 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
68 | 67 | brresi 5900 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦( I ↾ 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧)) |
69 | | df-br 5075 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦( I ↾ 𝐴)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴)) |
70 | 67 | ideq 5761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
71 | 70 | anbi2i 623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧)) |
72 | 68, 69, 71 | 3bitr3ri 302 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) ↔ 〈𝑦, 𝑧〉 ∈ ( I ↾ 𝐴)) |
73 | 66, 72 | bitr4di 289 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧))) |
74 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝑅 ↔ 〈𝑦, 𝑧〉 ∈ 𝑅)) |
75 | | df-br 5075 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝑅𝑧 ↔ 〈𝑦, 𝑧〉 ∈ 𝑅) |
76 | 74, 75 | bitr4di 289 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝑅 ↔ 𝑦𝑅𝑧)) |
77 | 76 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (¬ 𝑤 ∈ 𝑅 ↔ ¬ 𝑦𝑅𝑧)) |
78 | 73, 77 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 〈𝑦, 𝑧〉 → ((𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧) → ¬ 𝑦𝑅𝑧))) |
79 | 65, 78 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅))) |
80 | 79 | exlimdvv 1937 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅))) |
81 | 80 | impd 411 |
. . . . . . . . . 10
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ((∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 ∧ 𝑤 ∈ ( I ↾ 𝐴)) → ¬ 𝑤 ∈ 𝑅)) |
82 | 53, 81 | syl5 34 |
. . . . . . . . 9
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 ∈ ( I ↾ 𝐴) → ¬ 𝑤 ∈ 𝑅)) |
83 | 82 | con2d 134 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → (𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) |
84 | 83 | alrimiv 1930 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) → ∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴))) |
85 | 49, 84 | impbii 208 |
. . . . . 6
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) |
86 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥)) |
87 | 85, 86 | bitr4i 277 |
. . . . 5
⊢
(∀𝑤(𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) |
88 | 35, 36, 87 | 3bitri 297 |
. . . 4
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ↔
∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) |
89 | | ralcom 3166 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
90 | | r19.23v 3208 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
91 | 90 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
92 | 89, 91 | bitri 274 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
93 | 92 | ralbii 3092 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
94 | | brin 5126 |
. . . . . . . . . . . 12
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦)) |
95 | | brin 5126 |
. . . . . . . . . . . 12
⊢ (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧 ↔ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) |
96 | 94, 95 | anbi12i 627 |
. . . . . . . . . . 11
⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧))) |
97 | | an4 653 |
. . . . . . . . . . . 12
⊢ (((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ (𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧))) |
98 | | ancom 461 |
. . . . . . . . . . . 12
⊢ (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ (𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
99 | | ancom 461 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
100 | 99 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
101 | | brxp 5636 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
102 | | brxp 5636 |
. . . . . . . . . . . . . . 15
⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
103 | 101, 102 | anbi12i 627 |
. . . . . . . . . . . . . 14
⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
104 | | anandi 673 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
105 | 100, 103,
104 | 3bitr4i 303 |
. . . . . . . . . . . . 13
⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ↔ (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
106 | 105 | anbi1i 624 |
. . . . . . . . . . . 12
⊢ (((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
107 | 97, 98, 106 | 3bitri 297 |
. . . . . . . . . . 11
⊢ (((𝑥𝑅𝑦 ∧ 𝑥(𝐴 × 𝐴)𝑦) ∧ (𝑦𝑅𝑧 ∧ 𝑦(𝐴 × 𝐴)𝑧)) ↔ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
108 | | anass 469 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) |
109 | 96, 107, 108 | 3bitri 297 |
. . . . . . . . . 10
⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ (𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) |
110 | 109 | exbii 1850 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) |
111 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
112 | 111, 67 | brco 5779 |
. . . . . . . . . 10
⊢ (𝑥((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))𝑧 ↔ ∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
113 | | df-br 5075 |
. . . . . . . . . 10
⊢ (𝑥((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) |
114 | 112, 113 | bitr3i 276 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) |
115 | | df-rex 3070 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)))) |
116 | | r19.42v 3279 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
117 | 115, 116 | bitr3i 276 |
. . . . . . . . 9
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
118 | 110, 114,
117 | 3bitr3ri 302 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) ↔ 〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴)))) |
119 | | df-br 5075 |
. . . . . . . 8
⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) |
120 | 118, 119 | imbi12i 351 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ (〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
121 | 120 | 2albii 1823 |
. . . . . 6
⊢
(∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
122 | | r2al 3118 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
123 | | impexp 451 |
. . . . . . . 8
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
124 | 123 | 2albii 1823 |
. . . . . . 7
⊢
(∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
125 | 122, 124 | bitr4i 277 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧)) |
126 | | relco 6148 |
. . . . . . 7
⊢ Rel
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) |
127 | | ssrel 5693 |
. . . . . . 7
⊢ (Rel
((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅))) |
128 | 126, 127 | ax-mp 5 |
. . . . . 6
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
129 | 121, 125,
128 | 3bitr4i 303 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
130 | 93, 129 | bitr2i 275 |
. . . 4
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
131 | 88, 130 | anbi12i 627 |
. . 3
⊢ (((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
132 | 33, 34, 131 | 3bitr4g 314 |
. 2
⊢ (𝐴 ≠ ∅ → (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))) |
133 | 26, 132 | pm2.61ine 3028 |
1
⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) |