Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2b | Structured version Visualization version GIF version |
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
preq1b.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
preq1b.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
preq2b | ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4673 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
2 | prcom 4673 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
3 | 1, 2 | eqeq12i 2757 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
4 | preq1b.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | preq1b.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | 4, 5 | preq1b 4782 | . 2 ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
7 | 3, 6 | syl5bb 282 | 1 ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-sn 4567 df-pr 4569 |
This theorem is referenced by: umgr2v2enb1 27874 clsk1indlem4 41607 |
Copyright terms: Public domain | W3C validator |