Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2b | Structured version Visualization version GIF version |
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
preq1b.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
preq1b.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
preq2b | ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4670 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
2 | prcom 4670 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
3 | 1, 2 | eqeq12i 2756 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
4 | preq1b.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | preq1b.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | 4, 5 | preq1b 4779 | . 2 ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
7 | 3, 6 | bitrid 282 | 1 ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cpr 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3433 df-un 3893 df-sn 4564 df-pr 4566 |
This theorem is referenced by: umgr2v2enb1 27882 clsk1indlem4 41614 |
Copyright terms: Public domain | W3C validator |