| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2b | Structured version Visualization version GIF version | ||
| Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| preq1b.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| preq1b.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| preq2b | ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4682 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 2 | prcom 4682 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 3 | 1, 2 | eqeq12i 2749 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 4 | preq1b.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | preq1b.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | 4, 5 | preq1b 4795 | . 2 ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
| 7 | 3, 6 | bitrid 283 | 1 ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: umgr2v2enb1 29505 clsk1indlem4 44085 usgrexmpl2nb0 48070 usgrexmpl2nb1 48071 usgrexmpl2nb2 48072 usgrexmpl2nb3 48073 usgrexmpl2nb4 48074 usgrexmpl2nb5 48075 |
| Copyright terms: Public domain | W3C validator |