MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2enb1 Structured version   Visualization version   GIF version

Theorem umgr2v2enb1 29506
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2enb1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})

Proof of Theorem umgr2v2enb1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 29505 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 29502 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1132 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 480 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2731 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
86, 7nbumgrvtx 29325 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
92, 5, 8syl2anc 584 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
101umgr2v2eedg 29504 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
1110eleq2d 2817 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1211adantr 480 . . . . . . . . 9 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1312adantr 480 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
14 prex 5375 . . . . . . . . 9 {𝐴, 𝑥} ∈ V
1514elsn 4591 . . . . . . . 8 ({𝐴, 𝑥} ∈ {{𝐴, 𝐵}} ↔ {𝐴, 𝑥} = {𝐴, 𝐵})
1613, 15bitrdi 287 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} = {𝐴, 𝐵}))
17 simpr 484 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝑥 ∈ (Vtx‘𝐺))
18 simpll3 1215 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝐵𝑉)
1917, 18preq2b 4799 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} = {𝐴, 𝐵} ↔ 𝑥 = 𝐵))
2016, 19bitrd 279 . . . . . 6 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ 𝑥 = 𝐵))
2120pm5.32da 579 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
221umgr2v2evtx 29501 . . . . . . . . 9 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
23223ad2ant1 1133 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
24 eleq12 2821 . . . . . . . . . . 11 ((𝑥 = 𝐵 ∧ (Vtx‘𝐺) = 𝑉) → (𝑥 ∈ (Vtx‘𝐺) ↔ 𝐵𝑉))
2524exbiri 810 . . . . . . . . . 10 (𝑥 = 𝐵 → ((Vtx‘𝐺) = 𝑉 → (𝐵𝑉𝑥 ∈ (Vtx‘𝐺))))
2625com13 88 . . . . . . . . 9 (𝐵𝑉 → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
27263ad2ant3 1135 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
2823, 27mpd 15 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
2928adantr 480 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
3029pm4.71rd 562 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵 ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
3121, 30bitr4d 282 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3231alrimiv 1928 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
33 rabeqsn 4620 . . 3 ({𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵} ↔ ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3432, 33sylibr 234 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵})
359, 34eqtrd 2766 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wne 2928  {crab 3395  {csn 4576  {cpr 4578  cop 4582  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  Vtxcvtx 28975  Edgcedg 29026  UMGraphcumgr 29060   NeighbVtx cnbgr 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-vtx 28977  df-iedg 28978  df-edg 29027  df-upgr 29061  df-umgr 29062  df-nbgr 29312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator