MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2enb1 Structured version   Visualization version   GIF version

Theorem umgr2v2enb1 29559
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2enb1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})

Proof of Theorem umgr2v2enb1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 29558 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 29555 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1131 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 480 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2735 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
86, 7nbumgrvtx 29378 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
92, 5, 8syl2anc 584 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
101umgr2v2eedg 29557 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
1110eleq2d 2825 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1211adantr 480 . . . . . . . . 9 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1312adantr 480 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
14 prex 5443 . . . . . . . . 9 {𝐴, 𝑥} ∈ V
1514elsn 4646 . . . . . . . 8 ({𝐴, 𝑥} ∈ {{𝐴, 𝐵}} ↔ {𝐴, 𝑥} = {𝐴, 𝐵})
1613, 15bitrdi 287 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} = {𝐴, 𝐵}))
17 simpr 484 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝑥 ∈ (Vtx‘𝐺))
18 simpll3 1213 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝐵𝑉)
1917, 18preq2b 4852 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} = {𝐴, 𝐵} ↔ 𝑥 = 𝐵))
2016, 19bitrd 279 . . . . . 6 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ 𝑥 = 𝐵))
2120pm5.32da 579 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
221umgr2v2evtx 29554 . . . . . . . . 9 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
23223ad2ant1 1132 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
24 eleq12 2829 . . . . . . . . . . 11 ((𝑥 = 𝐵 ∧ (Vtx‘𝐺) = 𝑉) → (𝑥 ∈ (Vtx‘𝐺) ↔ 𝐵𝑉))
2524exbiri 811 . . . . . . . . . 10 (𝑥 = 𝐵 → ((Vtx‘𝐺) = 𝑉 → (𝐵𝑉𝑥 ∈ (Vtx‘𝐺))))
2625com13 88 . . . . . . . . 9 (𝐵𝑉 → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
27263ad2ant3 1134 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
2823, 27mpd 15 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
2928adantr 480 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
3029pm4.71rd 562 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵 ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
3121, 30bitr4d 282 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3231alrimiv 1925 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
33 rabeqsn 4672 . . 3 ({𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵} ↔ ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3432, 33sylibr 234 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵})
359, 34eqtrd 2775 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wne 2938  {crab 3433  {csn 4631  {cpr 4633  cop 4637  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  Vtxcvtx 29028  Edgcedg 29079  UMGraphcumgr 29113   NeighbVtx cnbgr 29364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-vtx 29030  df-iedg 29031  df-edg 29080  df-upgr 29114  df-umgr 29115  df-nbgr 29365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator