MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2enb1 Structured version   Visualization version   GIF version

Theorem umgr2v2enb1 28783
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2enb1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})

Proof of Theorem umgr2v2enb1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 28782 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 28779 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1133 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 482 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
86, 7nbumgrvtx 28603 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
92, 5, 8syl2anc 585 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
101umgr2v2eedg 28781 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
1110eleq2d 2820 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1211adantr 482 . . . . . . . . 9 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1312adantr 482 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
14 prex 5433 . . . . . . . . 9 {𝐴, 𝑥} ∈ V
1514elsn 4644 . . . . . . . 8 ({𝐴, 𝑥} ∈ {{𝐴, 𝐵}} ↔ {𝐴, 𝑥} = {𝐴, 𝐵})
1613, 15bitrdi 287 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} = {𝐴, 𝐵}))
17 simpr 486 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝑥 ∈ (Vtx‘𝐺))
18 simpll3 1215 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝐵𝑉)
1917, 18preq2b 4849 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} = {𝐴, 𝐵} ↔ 𝑥 = 𝐵))
2016, 19bitrd 279 . . . . . 6 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ 𝑥 = 𝐵))
2120pm5.32da 580 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
221umgr2v2evtx 28778 . . . . . . . . 9 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
23223ad2ant1 1134 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
24 eleq12 2824 . . . . . . . . . . 11 ((𝑥 = 𝐵 ∧ (Vtx‘𝐺) = 𝑉) → (𝑥 ∈ (Vtx‘𝐺) ↔ 𝐵𝑉))
2524exbiri 810 . . . . . . . . . 10 (𝑥 = 𝐵 → ((Vtx‘𝐺) = 𝑉 → (𝐵𝑉𝑥 ∈ (Vtx‘𝐺))))
2625com13 88 . . . . . . . . 9 (𝐵𝑉 → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
27263ad2ant3 1136 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
2823, 27mpd 15 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
2928adantr 482 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
3029pm4.71rd 564 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵 ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
3121, 30bitr4d 282 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3231alrimiv 1931 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
33 rabeqsn 4670 . . 3 ({𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵} ↔ ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3432, 33sylibr 233 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵})
359, 34eqtrd 2773 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wne 2941  {crab 3433  {csn 4629  {cpr 4631  cop 4635  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111  Vtxcvtx 28256  Edgcedg 28307  UMGraphcumgr 28341   NeighbVtx cnbgr 28589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291  df-vtx 28258  df-iedg 28259  df-edg 28308  df-upgr 28342  df-umgr 28343  df-nbgr 28590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator