MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2enb1 Structured version   Visualization version   GIF version

Theorem umgr2v2enb1 29050
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2enb1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})

Proof of Theorem umgr2v2enb1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 29049 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 29046 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1130 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 479 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
86, 7nbumgrvtx 28870 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
92, 5, 8syl2anc 582 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
101umgr2v2eedg 29048 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
1110eleq2d 2817 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1211adantr 479 . . . . . . . . 9 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1312adantr 479 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
14 prex 5431 . . . . . . . . 9 {𝐴, 𝑥} ∈ V
1514elsn 4642 . . . . . . . 8 ({𝐴, 𝑥} ∈ {{𝐴, 𝐵}} ↔ {𝐴, 𝑥} = {𝐴, 𝐵})
1613, 15bitrdi 286 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} = {𝐴, 𝐵}))
17 simpr 483 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝑥 ∈ (Vtx‘𝐺))
18 simpll3 1212 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝐵𝑉)
1917, 18preq2b 4847 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} = {𝐴, 𝐵} ↔ 𝑥 = 𝐵))
2016, 19bitrd 278 . . . . . 6 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ 𝑥 = 𝐵))
2120pm5.32da 577 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
221umgr2v2evtx 29045 . . . . . . . . 9 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
23223ad2ant1 1131 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
24 eleq12 2821 . . . . . . . . . . 11 ((𝑥 = 𝐵 ∧ (Vtx‘𝐺) = 𝑉) → (𝑥 ∈ (Vtx‘𝐺) ↔ 𝐵𝑉))
2524exbiri 807 . . . . . . . . . 10 (𝑥 = 𝐵 → ((Vtx‘𝐺) = 𝑉 → (𝐵𝑉𝑥 ∈ (Vtx‘𝐺))))
2625com13 88 . . . . . . . . 9 (𝐵𝑉 → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
27263ad2ant3 1133 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
2823, 27mpd 15 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
2928adantr 479 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
3029pm4.71rd 561 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵 ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
3121, 30bitr4d 281 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3231alrimiv 1928 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
33 rabeqsn 4668 . . 3 ({𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵} ↔ ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3432, 33sylibr 233 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵})
359, 34eqtrd 2770 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085  wal 1537   = wceq 1539  wcel 2104  wne 2938  {crab 3430  {csn 4627  {cpr 4629  cop 4633  cfv 6542  (class class class)co 7411  0cc0 11112  1c1 11113  Vtxcvtx 28523  Edgcedg 28574  UMGraphcumgr 28608   NeighbVtx cnbgr 28856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-vtx 28525  df-iedg 28526  df-edg 28575  df-upgr 28609  df-umgr 28610  df-nbgr 28857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator