MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2enb1 Structured version   Visualization version   GIF version

Theorem umgr2v2enb1 29463
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2enb1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})

Proof of Theorem umgr2v2enb1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 29462 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 29459 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1129 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 479 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2726 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
86, 7nbumgrvtx 29282 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
92, 5, 8syl2anc 582 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)})
101umgr2v2eedg 29461 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
1110eleq2d 2812 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1211adantr 479 . . . . . . . . 9 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
1312adantr 479 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} ∈ {{𝐴, 𝐵}}))
14 prex 5438 . . . . . . . . 9 {𝐴, 𝑥} ∈ V
1514elsn 4648 . . . . . . . 8 ({𝐴, 𝑥} ∈ {{𝐴, 𝐵}} ↔ {𝐴, 𝑥} = {𝐴, 𝐵})
1613, 15bitrdi 286 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ {𝐴, 𝑥} = {𝐴, 𝐵}))
17 simpr 483 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝑥 ∈ (Vtx‘𝐺))
18 simpll3 1211 . . . . . . . 8 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → 𝐵𝑉)
1917, 18preq2b 4854 . . . . . . 7 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} = {𝐴, 𝐵} ↔ 𝑥 = 𝐵))
2016, 19bitrd 278 . . . . . 6 ((((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ 𝑥 ∈ (Vtx‘𝐺)) → ({𝐴, 𝑥} ∈ (Edg‘𝐺) ↔ 𝑥 = 𝐵))
2120pm5.32da 577 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
221umgr2v2evtx 29458 . . . . . . . . 9 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
23223ad2ant1 1130 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
24 eleq12 2816 . . . . . . . . . . 11 ((𝑥 = 𝐵 ∧ (Vtx‘𝐺) = 𝑉) → (𝑥 ∈ (Vtx‘𝐺) ↔ 𝐵𝑉))
2524exbiri 809 . . . . . . . . . 10 (𝑥 = 𝐵 → ((Vtx‘𝐺) = 𝑉 → (𝐵𝑉𝑥 ∈ (Vtx‘𝐺))))
2625com13 88 . . . . . . . . 9 (𝐵𝑉 → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
27263ad2ant3 1132 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((Vtx‘𝐺) = 𝑉 → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺))))
2823, 27mpd 15 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
2928adantr 479 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵𝑥 ∈ (Vtx‘𝐺)))
3029pm4.71rd 561 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑥 = 𝐵 ↔ (𝑥 ∈ (Vtx‘𝐺) ∧ 𝑥 = 𝐵)))
3121, 30bitr4d 281 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3231alrimiv 1923 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
33 rabeqsn 4674 . . 3 ({𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵} ↔ ∀𝑥((𝑥 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝑥} ∈ (Edg‘𝐺)) ↔ 𝑥 = 𝐵))
3432, 33sylibr 233 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝑥 ∈ (Vtx‘𝐺) ∣ {𝐴, 𝑥} ∈ (Edg‘𝐺)} = {𝐵})
359, 34eqtrd 2766 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wal 1532   = wceq 1534  wcel 2099  wne 2930  {crab 3419  {csn 4633  {cpr 4635  cop 4639  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159  Vtxcvtx 28932  Edgcedg 28983  UMGraphcumgr 29017   NeighbVtx cnbgr 29268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-hash 14348  df-vtx 28934  df-iedg 28935  df-edg 28984  df-upgr 29018  df-umgr 29019  df-nbgr 29269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator