Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem4 Structured version   Visualization version   GIF version

Theorem clsk1indlem4 44147
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem4 𝑠 ∈ 𝒫 3o(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem4
StepHypRef Expression
1 tpex 7679 . . . . . . . . . 10 {∅, 1o, 2o} ∈ V
21a1i 11 . . . . . . . . 9 (⊤ → {∅, 1o, 2o} ∈ V)
3 snsstp1 4765 . . . . . . . . . . . 12 {∅} ⊆ {∅, 1o, 2o}
43a1i 11 . . . . . . . . . . 11 (⊤ → {∅} ⊆ {∅, 1o, 2o})
5 0ex 5243 . . . . . . . . . . . 12 ∅ ∈ V
65snss 4734 . . . . . . . . . . 11 (∅ ∈ {∅, 1o, 2o} ↔ {∅} ⊆ {∅, 1o, 2o})
74, 6sylibr 234 . . . . . . . . . 10 (⊤ → ∅ ∈ {∅, 1o, 2o})
8 snsstp2 4766 . . . . . . . . . . . 12 {1o} ⊆ {∅, 1o, 2o}
98a1i 11 . . . . . . . . . . 11 (⊤ → {1o} ⊆ {∅, 1o, 2o})
10 1oex 8395 . . . . . . . . . . . 12 1o ∈ V
1110snss 4734 . . . . . . . . . . 11 (1o ∈ {∅, 1o, 2o} ↔ {1o} ⊆ {∅, 1o, 2o})
129, 11sylibr 234 . . . . . . . . . 10 (⊤ → 1o ∈ {∅, 1o, 2o})
137, 12prssd 4771 . . . . . . . . 9 (⊤ → {∅, 1o} ⊆ {∅, 1o, 2o})
142, 13sselpwd 5264 . . . . . . . 8 (⊤ → {∅, 1o} ∈ 𝒫 {∅, 1o, 2o})
1514mptru 1548 . . . . . . 7 {∅, 1o} ∈ 𝒫 {∅, 1o, 2o}
16 df3o2 43416 . . . . . . . 8 3o = {∅, 1o, 2o}
1716pweqi 4563 . . . . . . 7 𝒫 3o = 𝒫 {∅, 1o, 2o}
1815, 17eleqtrri 2830 . . . . . 6 {∅, 1o} ∈ 𝒫 3o
1918a1i 11 . . . . 5 (𝑠 ∈ 𝒫 3o → {∅, 1o} ∈ 𝒫 3o)
20 id 22 . . . . 5 (𝑠 ∈ 𝒫 3o𝑠 ∈ 𝒫 3o)
2119, 20ifcld 4519 . . . 4 (𝑠 ∈ 𝒫 3o → if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ 𝒫 3o)
22 eqeq1 2735 . . . . . . . 8 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅}))
23 eqcom 2738 . . . . . . . . 9 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
24 eqif 4514 . . . . . . . . 9 ({∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2523, 24bitri 275 . . . . . . . 8 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2622, 25bitrdi 287 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))))
27 id 22 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
2826, 27ifbieq2d 4499 . . . . . 6 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o}, if(𝑠 = {∅}, {∅, 1o}, 𝑠)))
29 1n0 8403 . . . . . . . . . 10 1o ≠ ∅
30 dfsn2 4586 . . . . . . . . . . . 12 {∅} = {∅, ∅}
3130eqeq1i 2736 . . . . . . . . . . 11 ({∅} = {∅, 1o} ↔ {∅, ∅} = {∅, 1o})
325a1i 11 . . . . . . . . . . . . 13 (⊤ → ∅ ∈ V)
33 1on 8397 . . . . . . . . . . . . . 14 1o ∈ On
3433a1i 11 . . . . . . . . . . . . 13 (⊤ → 1o ∈ On)
3532, 34preq2b 4796 . . . . . . . . . . . 12 (⊤ → ({∅, ∅} = {∅, 1o} ↔ ∅ = 1o))
3635mptru 1548 . . . . . . . . . . 11 ({∅, ∅} = {∅, 1o} ↔ ∅ = 1o)
37 eqcom 2738 . . . . . . . . . . 11 (∅ = 1o ↔ 1o = ∅)
3831, 36, 373bitri 297 . . . . . . . . . 10 ({∅} = {∅, 1o} ↔ 1o = ∅)
3929, 38nemtbir 3024 . . . . . . . . 9 ¬ {∅} = {∅, 1o}
4039intnan 486 . . . . . . . 8 ¬ (𝑠 = {∅} ∧ {∅} = {∅, 1o})
41 pm3.24 402 . . . . . . . . 9 ¬ (𝑠 = {∅} ∧ ¬ 𝑠 = {∅})
42 eqcom 2738 . . . . . . . . . 10 (𝑠 = {∅} ↔ {∅} = 𝑠)
4342anbi2ci 625 . . . . . . . . 9 ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4441, 43mtbi 322 . . . . . . . 8 ¬ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)
4540, 44pm3.2ni 880 . . . . . . 7 ¬ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4645iffalsei 4482 . . . . . 6 if(((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o}, if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)
4728, 46eqtrdi 2782 . . . . 5 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
48 clsk1indlem.k . . . . 5 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
49 prex 5373 . . . . . 6 {∅, 1o} ∈ V
50 vex 3440 . . . . . 6 𝑠 ∈ V
5149, 50ifex 4523 . . . . 5 if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ V
5247, 48, 51fvmpt 6929 . . . 4 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ 𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5321, 52syl 17 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
54 eqeq1 2735 . . . . . 6 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
55 id 22 . . . . . 6 (𝑟 = 𝑠𝑟 = 𝑠)
5654, 55ifbieq2d 4499 . . . . 5 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5756, 48, 51fvmpt 6929 . . . 4 (𝑠 ∈ 𝒫 3o → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5857fveq2d 6826 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾‘(𝐾𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)))
5953, 58, 573eqtr4d 2776 . 2 (𝑠 ∈ 𝒫 3o → (𝐾‘(𝐾𝑠)) = (𝐾𝑠))
6059rgen 3049 1 𝑠 ∈ 𝒫 3o(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wtru 1542  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4280  ifcif 4472  𝒫 cpw 4547  {csn 4573  {cpr 4575  {ctp 4577  cmpt 5170  Oncon0 6306  cfv 6481  1oc1o 8378  2oc2o 8379  3oc3o 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fv 6489  df-1o 8385  df-2o 8386  df-3o 8387
This theorem is referenced by:  clsk1independent  44149
  Copyright terms: Public domain W3C validator