Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem4 Structured version   Visualization version   GIF version

Theorem clsk1indlem4 40400
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem4 𝑠 ∈ 𝒫 3o(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem4
StepHypRef Expression
1 tpex 7473 . . . . . . . . . 10 {∅, 1o, 2o} ∈ V
21a1i 11 . . . . . . . . 9 (⊤ → {∅, 1o, 2o} ∈ V)
3 snsstp1 4752 . . . . . . . . . . . 12 {∅} ⊆ {∅, 1o, 2o}
43a1i 11 . . . . . . . . . . 11 (⊤ → {∅} ⊆ {∅, 1o, 2o})
5 0ex 5214 . . . . . . . . . . . 12 ∅ ∈ V
65snss 4721 . . . . . . . . . . 11 (∅ ∈ {∅, 1o, 2o} ↔ {∅} ⊆ {∅, 1o, 2o})
74, 6sylibr 236 . . . . . . . . . 10 (⊤ → ∅ ∈ {∅, 1o, 2o})
8 snsstp2 4753 . . . . . . . . . . . 12 {1o} ⊆ {∅, 1o, 2o}
98a1i 11 . . . . . . . . . . 11 (⊤ → {1o} ⊆ {∅, 1o, 2o})
10 1oex 8113 . . . . . . . . . . . 12 1o ∈ V
1110snss 4721 . . . . . . . . . . 11 (1o ∈ {∅, 1o, 2o} ↔ {1o} ⊆ {∅, 1o, 2o})
129, 11sylibr 236 . . . . . . . . . 10 (⊤ → 1o ∈ {∅, 1o, 2o})
137, 12prssd 4758 . . . . . . . . 9 (⊤ → {∅, 1o} ⊆ {∅, 1o, 2o})
142, 13sselpwd 5233 . . . . . . . 8 (⊤ → {∅, 1o} ∈ 𝒫 {∅, 1o, 2o})
1514mptru 1543 . . . . . . 7 {∅, 1o} ∈ 𝒫 {∅, 1o, 2o}
16 df3o2 40380 . . . . . . . 8 3o = {∅, 1o, 2o}
1716pweqi 4560 . . . . . . 7 𝒫 3o = 𝒫 {∅, 1o, 2o}
1815, 17eleqtrri 2915 . . . . . 6 {∅, 1o} ∈ 𝒫 3o
1918a1i 11 . . . . 5 (𝑠 ∈ 𝒫 3o → {∅, 1o} ∈ 𝒫 3o)
20 id 22 . . . . 5 (𝑠 ∈ 𝒫 3o𝑠 ∈ 𝒫 3o)
2119, 20ifcld 4515 . . . 4 (𝑠 ∈ 𝒫 3o → if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ 𝒫 3o)
22 eqeq1 2828 . . . . . . . 8 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅}))
23 eqcom 2831 . . . . . . . . 9 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
24 eqif 4510 . . . . . . . . 9 ({∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2523, 24bitri 277 . . . . . . . 8 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2622, 25syl6bb 289 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))))
27 id 22 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
2826, 27ifbieq2d 4495 . . . . . 6 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o}, if(𝑠 = {∅}, {∅, 1o}, 𝑠)))
29 1n0 8122 . . . . . . . . . 10 1o ≠ ∅
30 dfsn2 4583 . . . . . . . . . . . 12 {∅} = {∅, ∅}
3130eqeq1i 2829 . . . . . . . . . . 11 ({∅} = {∅, 1o} ↔ {∅, ∅} = {∅, 1o})
325a1i 11 . . . . . . . . . . . . 13 (⊤ → ∅ ∈ V)
33 1on 8112 . . . . . . . . . . . . . 14 1o ∈ On
3433a1i 11 . . . . . . . . . . . . 13 (⊤ → 1o ∈ On)
3532, 34preq2b 4781 . . . . . . . . . . . 12 (⊤ → ({∅, ∅} = {∅, 1o} ↔ ∅ = 1o))
3635mptru 1543 . . . . . . . . . . 11 ({∅, ∅} = {∅, 1o} ↔ ∅ = 1o)
37 eqcom 2831 . . . . . . . . . . 11 (∅ = 1o ↔ 1o = ∅)
3831, 36, 373bitri 299 . . . . . . . . . 10 ({∅} = {∅, 1o} ↔ 1o = ∅)
3929, 38nemtbir 3115 . . . . . . . . 9 ¬ {∅} = {∅, 1o}
4039intnan 489 . . . . . . . 8 ¬ (𝑠 = {∅} ∧ {∅} = {∅, 1o})
41 pm3.24 405 . . . . . . . . 9 ¬ (𝑠 = {∅} ∧ ¬ 𝑠 = {∅})
42 eqcom 2831 . . . . . . . . . 10 (𝑠 = {∅} ↔ {∅} = 𝑠)
4342anbi2ci 626 . . . . . . . . 9 ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4441, 43mtbi 324 . . . . . . . 8 ¬ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)
4540, 44pm3.2ni 877 . . . . . . 7 ¬ ((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4645iffalsei 4480 . . . . . 6 if(((𝑠 = {∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o}, if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)
4728, 46syl6eq 2875 . . . . 5 (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
48 clsk1indlem.k . . . . 5 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
49 prex 5336 . . . . . 6 {∅, 1o} ∈ V
50 vex 3500 . . . . . 6 𝑠 ∈ V
5149, 50ifex 4518 . . . . 5 if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ V
5247, 48, 51fvmpt 6771 . . . 4 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ 𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5321, 52syl 17 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
54 eqeq1 2828 . . . . . 6 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
55 id 22 . . . . . 6 (𝑟 = 𝑠𝑟 = 𝑠)
5654, 55ifbieq2d 4495 . . . . 5 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5756, 48, 51fvmpt 6771 . . . 4 (𝑠 ∈ 𝒫 3o → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
5857fveq2d 6677 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾‘(𝐾𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)))
5953, 58, 573eqtr4d 2869 . 2 (𝑠 ∈ 𝒫 3o → (𝐾‘(𝐾𝑠)) = (𝐾𝑠))
6059rgen 3151 1 𝑠 ∈ 𝒫 3o(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1536  wtru 1537  wcel 2113  wral 3141  Vcvv 3497  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542  {csn 4570  {cpr 4572  {ctp 4574  cmpt 5149  Oncon0 6194  cfv 6358  1oc1o 8098  2oc2o 8099  3oc3o 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fv 6366  df-1o 8105  df-2o 8106  df-3o 8107
This theorem is referenced by:  clsk1independent  40402
  Copyright terms: Public domain W3C validator