Proof of Theorem clsk1indlem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tpex 7767 | . . . . . . . . . 10
⊢ {∅,
1o, 2o} ∈ V | 
| 2 | 1 | a1i 11 | . . . . . . . . 9
⊢ (⊤
→ {∅, 1o, 2o} ∈ V) | 
| 3 |  | snsstp1 4815 | . . . . . . . . . . . 12
⊢ {∅}
⊆ {∅, 1o, 2o} | 
| 4 | 3 | a1i 11 | . . . . . . . . . . 11
⊢ (⊤
→ {∅} ⊆ {∅, 1o,
2o}) | 
| 5 |  | 0ex 5306 | . . . . . . . . . . . 12
⊢ ∅
∈ V | 
| 6 | 5 | snss 4784 | . . . . . . . . . . 11
⊢ (∅
∈ {∅, 1o, 2o} ↔ {∅} ⊆
{∅, 1o, 2o}) | 
| 7 | 4, 6 | sylibr 234 | . . . . . . . . . 10
⊢ (⊤
→ ∅ ∈ {∅, 1o, 2o}) | 
| 8 |  | snsstp2 4816 | . . . . . . . . . . . 12
⊢
{1o} ⊆ {∅, 1o,
2o} | 
| 9 | 8 | a1i 11 | . . . . . . . . . . 11
⊢ (⊤
→ {1o} ⊆ {∅, 1o,
2o}) | 
| 10 |  | 1oex 8517 | . . . . . . . . . . . 12
⊢
1o ∈ V | 
| 11 | 10 | snss 4784 | . . . . . . . . . . 11
⊢
(1o ∈ {∅, 1o, 2o} ↔
{1o} ⊆ {∅, 1o,
2o}) | 
| 12 | 9, 11 | sylibr 234 | . . . . . . . . . 10
⊢ (⊤
→ 1o ∈ {∅, 1o,
2o}) | 
| 13 | 7, 12 | prssd 4821 | . . . . . . . . 9
⊢ (⊤
→ {∅, 1o} ⊆ {∅, 1o,
2o}) | 
| 14 | 2, 13 | sselpwd 5327 | . . . . . . . 8
⊢ (⊤
→ {∅, 1o} ∈ 𝒫 {∅, 1o,
2o}) | 
| 15 | 14 | mptru 1546 | . . . . . . 7
⊢ {∅,
1o} ∈ 𝒫 {∅, 1o,
2o} | 
| 16 |  | df3o2 43331 | . . . . . . . 8
⊢
3o = {∅, 1o, 2o} | 
| 17 | 16 | pweqi 4615 | . . . . . . 7
⊢ 𝒫
3o = 𝒫 {∅, 1o,
2o} | 
| 18 | 15, 17 | eleqtrri 2839 | . . . . . 6
⊢ {∅,
1o} ∈ 𝒫 3o | 
| 19 | 18 | a1i 11 | . . . . 5
⊢ (𝑠 ∈ 𝒫 3o
→ {∅, 1o} ∈ 𝒫
3o) | 
| 20 |  | id 22 | . . . . 5
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ∈ 𝒫
3o) | 
| 21 | 19, 20 | ifcld 4571 | . . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ if(𝑠 = {∅},
{∅, 1o}, 𝑠) ∈ 𝒫
3o) | 
| 22 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅})) | 
| 23 |  | eqcom 2743 | . . . . . . . . 9
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 24 |  | eqif 4566 | . . . . . . . . 9
⊢
({∅} = if(𝑠 =
{∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))) | 
| 25 | 23, 24 | bitri 275 | . . . . . . . 8
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅} ↔ ((𝑠 =
{∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} =
𝑠))) | 
| 26 | 22, 25 | bitrdi 287 | . . . . . . 7
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))) | 
| 27 |  | id 22 | . . . . . . 7
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 28 | 26, 27 | ifbieq2d 4551 | . . . . . 6
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o},
if(𝑠 = {∅}, {∅,
1o}, 𝑠))) | 
| 29 |  | 1n0 8527 | . . . . . . . . . 10
⊢
1o ≠ ∅ | 
| 30 |  | dfsn2 4638 | . . . . . . . . . . . 12
⊢ {∅}
= {∅, ∅} | 
| 31 | 30 | eqeq1i 2741 | . . . . . . . . . . 11
⊢
({∅} = {∅, 1o} ↔ {∅, ∅} =
{∅, 1o}) | 
| 32 | 5 | a1i 11 | . . . . . . . . . . . . 13
⊢ (⊤
→ ∅ ∈ V) | 
| 33 |  | 1on 8519 | . . . . . . . . . . . . . 14
⊢
1o ∈ On | 
| 34 | 33 | a1i 11 | . . . . . . . . . . . . 13
⊢ (⊤
→ 1o ∈ On) | 
| 35 | 32, 34 | preq2b 4846 | . . . . . . . . . . . 12
⊢ (⊤
→ ({∅, ∅} = {∅, 1o} ↔ ∅ =
1o)) | 
| 36 | 35 | mptru 1546 | . . . . . . . . . . 11
⊢
({∅, ∅} = {∅, 1o} ↔ ∅ =
1o) | 
| 37 |  | eqcom 2743 | . . . . . . . . . . 11
⊢ (∅
= 1o ↔ 1o = ∅) | 
| 38 | 31, 36, 37 | 3bitri 297 | . . . . . . . . . 10
⊢
({∅} = {∅, 1o} ↔ 1o =
∅) | 
| 39 | 29, 38 | nemtbir 3037 | . . . . . . . . 9
⊢  ¬
{∅} = {∅, 1o} | 
| 40 | 39 | intnan 486 | . . . . . . . 8
⊢  ¬
(𝑠 = {∅} ∧
{∅} = {∅, 1o}) | 
| 41 |  | pm3.24 402 | . . . . . . . . 9
⊢  ¬
(𝑠 = {∅} ∧ ¬
𝑠 =
{∅}) | 
| 42 |  | eqcom 2743 | . . . . . . . . . 10
⊢ (𝑠 = {∅} ↔ {∅} =
𝑠) | 
| 43 | 42 | anbi2ci 625 | . . . . . . . . 9
⊢ ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬
𝑠 = {∅} ∧
{∅} = 𝑠)) | 
| 44 | 41, 43 | mtbi 322 | . . . . . . . 8
⊢  ¬
(¬ 𝑠 = {∅} ∧
{∅} = 𝑠) | 
| 45 | 40, 44 | pm3.2ni 880 | . . . . . . 7
⊢  ¬
((𝑠 = {∅} ∧
{∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)) | 
| 46 | 45 | iffalsei 4534 | . . . . . 6
⊢
if(((𝑠 = {∅}
∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o},
if(𝑠 = {∅}, {∅,
1o}, 𝑠)) =
if(𝑠 = {∅}, {∅,
1o}, 𝑠) | 
| 47 | 28, 46 | eqtrdi 2792 | . . . . 5
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 48 |  | clsk1indlem.k | . . . . 5
⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦
if(𝑟 = {∅}, {∅,
1o}, 𝑟)) | 
| 49 |  | prex 5436 | . . . . . 6
⊢ {∅,
1o} ∈ V | 
| 50 |  | vex 3483 | . . . . . 6
⊢ 𝑠 ∈ V | 
| 51 | 49, 50 | ifex 4575 | . . . . 5
⊢ if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
V | 
| 52 | 47, 48, 51 | fvmpt 7015 | . . . 4
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 53 | 21, 52 | syl 17 | . . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘if(𝑠 = {∅}, {∅,
1o}, 𝑠)) =
if(𝑠 = {∅}, {∅,
1o}, 𝑠)) | 
| 54 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅})) | 
| 55 |  | id 22 | . . . . . 6
⊢ (𝑟 = 𝑠 → 𝑟 = 𝑠) | 
| 56 | 54, 55 | ifbieq2d 4551 | . . . . 5
⊢ (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 57 | 56, 48, 51 | fvmpt 7015 | . . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 58 | 57 | fveq2d 6909 | . . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘(𝐾‘𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠))) | 
| 59 | 53, 58, 57 | 3eqtr4d 2786 | . 2
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠)) | 
| 60 | 59 | rgen 3062 | 1
⊢
∀𝑠 ∈
𝒫 3o(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠) |