Proof of Theorem clsk1indlem4
| Step | Hyp | Ref
| Expression |
| 1 | | tpex 7745 |
. . . . . . . . . 10
⊢ {∅,
1o, 2o} ∈ V |
| 2 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ {∅, 1o, 2o} ∈ V) |
| 3 | | snsstp1 4797 |
. . . . . . . . . . . 12
⊢ {∅}
⊆ {∅, 1o, 2o} |
| 4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ {∅} ⊆ {∅, 1o,
2o}) |
| 5 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 6 | 5 | snss 4766 |
. . . . . . . . . . 11
⊢ (∅
∈ {∅, 1o, 2o} ↔ {∅} ⊆
{∅, 1o, 2o}) |
| 7 | 4, 6 | sylibr 234 |
. . . . . . . . . 10
⊢ (⊤
→ ∅ ∈ {∅, 1o, 2o}) |
| 8 | | snsstp2 4798 |
. . . . . . . . . . . 12
⊢
{1o} ⊆ {∅, 1o,
2o} |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ {1o} ⊆ {∅, 1o,
2o}) |
| 10 | | 1oex 8495 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
| 11 | 10 | snss 4766 |
. . . . . . . . . . 11
⊢
(1o ∈ {∅, 1o, 2o} ↔
{1o} ⊆ {∅, 1o,
2o}) |
| 12 | 9, 11 | sylibr 234 |
. . . . . . . . . 10
⊢ (⊤
→ 1o ∈ {∅, 1o,
2o}) |
| 13 | 7, 12 | prssd 4803 |
. . . . . . . . 9
⊢ (⊤
→ {∅, 1o} ⊆ {∅, 1o,
2o}) |
| 14 | 2, 13 | sselpwd 5303 |
. . . . . . . 8
⊢ (⊤
→ {∅, 1o} ∈ 𝒫 {∅, 1o,
2o}) |
| 15 | 14 | mptru 1547 |
. . . . . . 7
⊢ {∅,
1o} ∈ 𝒫 {∅, 1o,
2o} |
| 16 | | df3o2 43304 |
. . . . . . . 8
⊢
3o = {∅, 1o, 2o} |
| 17 | 16 | pweqi 4596 |
. . . . . . 7
⊢ 𝒫
3o = 𝒫 {∅, 1o,
2o} |
| 18 | 15, 17 | eleqtrri 2834 |
. . . . . 6
⊢ {∅,
1o} ∈ 𝒫 3o |
| 19 | 18 | a1i 11 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 3o
→ {∅, 1o} ∈ 𝒫
3o) |
| 20 | | id 22 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ∈ 𝒫
3o) |
| 21 | 19, 20 | ifcld 4552 |
. . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ if(𝑠 = {∅},
{∅, 1o}, 𝑠) ∈ 𝒫
3o) |
| 22 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅})) |
| 23 | | eqcom 2743 |
. . . . . . . . 9
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 24 | | eqif 4547 |
. . . . . . . . 9
⊢
({∅} = if(𝑠 =
{∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))) |
| 25 | 23, 24 | bitri 275 |
. . . . . . . 8
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅} ↔ ((𝑠 =
{∅} ∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} =
𝑠))) |
| 26 | 22, 25 | bitrdi 287 |
. . . . . . 7
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))) |
| 27 | | id 22 |
. . . . . . 7
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 28 | 26, 27 | ifbieq2d 4532 |
. . . . . 6
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o},
if(𝑠 = {∅}, {∅,
1o}, 𝑠))) |
| 29 | | 1n0 8505 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
| 30 | | dfsn2 4619 |
. . . . . . . . . . . 12
⊢ {∅}
= {∅, ∅} |
| 31 | 30 | eqeq1i 2741 |
. . . . . . . . . . 11
⊢
({∅} = {∅, 1o} ↔ {∅, ∅} =
{∅, 1o}) |
| 32 | 5 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ∅ ∈ V) |
| 33 | | 1on 8497 |
. . . . . . . . . . . . . 14
⊢
1o ∈ On |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 1o ∈ On) |
| 35 | 32, 34 | preq2b 4828 |
. . . . . . . . . . . 12
⊢ (⊤
→ ({∅, ∅} = {∅, 1o} ↔ ∅ =
1o)) |
| 36 | 35 | mptru 1547 |
. . . . . . . . . . 11
⊢
({∅, ∅} = {∅, 1o} ↔ ∅ =
1o) |
| 37 | | eqcom 2743 |
. . . . . . . . . . 11
⊢ (∅
= 1o ↔ 1o = ∅) |
| 38 | 31, 36, 37 | 3bitri 297 |
. . . . . . . . . 10
⊢
({∅} = {∅, 1o} ↔ 1o =
∅) |
| 39 | 29, 38 | nemtbir 3029 |
. . . . . . . . 9
⊢ ¬
{∅} = {∅, 1o} |
| 40 | 39 | intnan 486 |
. . . . . . . 8
⊢ ¬
(𝑠 = {∅} ∧
{∅} = {∅, 1o}) |
| 41 | | pm3.24 402 |
. . . . . . . . 9
⊢ ¬
(𝑠 = {∅} ∧ ¬
𝑠 =
{∅}) |
| 42 | | eqcom 2743 |
. . . . . . . . . 10
⊢ (𝑠 = {∅} ↔ {∅} =
𝑠) |
| 43 | 42 | anbi2ci 625 |
. . . . . . . . 9
⊢ ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬
𝑠 = {∅} ∧
{∅} = 𝑠)) |
| 44 | 41, 43 | mtbi 322 |
. . . . . . . 8
⊢ ¬
(¬ 𝑠 = {∅} ∧
{∅} = 𝑠) |
| 45 | 40, 44 | pm3.2ni 880 |
. . . . . . 7
⊢ ¬
((𝑠 = {∅} ∧
{∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)) |
| 46 | 45 | iffalsei 4515 |
. . . . . 6
⊢
if(((𝑠 = {∅}
∧ {∅} = {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1o},
if(𝑠 = {∅}, {∅,
1o}, 𝑠)) =
if(𝑠 = {∅}, {∅,
1o}, 𝑠) |
| 47 | 28, 46 | eqtrdi 2787 |
. . . . 5
⊢ (𝑟 = if(𝑠 = {∅}, {∅, 1o}, 𝑠) → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 48 | | clsk1indlem.k |
. . . . 5
⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦
if(𝑟 = {∅}, {∅,
1o}, 𝑟)) |
| 49 | | prex 5412 |
. . . . . 6
⊢ {∅,
1o} ∈ V |
| 50 | | vex 3468 |
. . . . . 6
⊢ 𝑠 ∈ V |
| 51 | 49, 50 | ifex 4556 |
. . . . 5
⊢ if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
V |
| 52 | 47, 48, 51 | fvmpt 6991 |
. . . 4
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
𝒫 3o → (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠)) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 53 | 21, 52 | syl 17 |
. . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘if(𝑠 = {∅}, {∅,
1o}, 𝑠)) =
if(𝑠 = {∅}, {∅,
1o}, 𝑠)) |
| 54 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅})) |
| 55 | | id 22 |
. . . . . 6
⊢ (𝑟 = 𝑠 → 𝑟 = 𝑠) |
| 56 | 54, 55 | ifbieq2d 4532 |
. . . . 5
⊢ (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 57 | 56, 48, 51 | fvmpt 6991 |
. . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 58 | 57 | fveq2d 6885 |
. . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘(𝐾‘𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1o}, 𝑠))) |
| 59 | 53, 58, 57 | 3eqtr4d 2781 |
. 2
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠)) |
| 60 | 59 | rgen 3054 |
1
⊢
∀𝑠 ∈
𝒫 3o(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠) |