Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preqr1 | Structured version Visualization version GIF version |
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
preqr1.a | ⊢ 𝐴 ∈ V |
preqr1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
preqr1 | ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
2 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | preqr1.b | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 2, 4 | preq1b 4774 | . . 3 ⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵) |
7 | 6 | biimpi 215 | 1 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: preqr2 4777 opthwiener 5422 opthhausdorff0 5426 cusgrfilem2 27726 usgr2wlkneq 28025 wopprc 40768 |
Copyright terms: Public domain | W3C validator |