MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1 Structured version   Visualization version   GIF version

Theorem preqr1 4853
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion
Ref Expression
preqr1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.a . . 3 𝐴 ∈ V
2 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
3 preqr1.b . . . . 5 𝐵 ∈ V
43a1i 11 . . . 4 (𝐴 ∈ V → 𝐵 ∈ V)
52, 4preq1b 4851 . . 3 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
61, 5ax-mp 5 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)
76biimpi 216 1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-sn 4632  df-pr 4634
This theorem is referenced by:  preqr2  4854  opthwiener  5524  opthhausdorff0  5528  cusgrfilem2  29489  usgr2wlkneq  29789  wopprc  43019
  Copyright terms: Public domain W3C validator