MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1 Structured version   Visualization version   GIF version

Theorem preqr1 4815
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion
Ref Expression
preqr1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.a . . 3 𝐴 ∈ V
2 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
3 preqr1.b . . . . 5 𝐵 ∈ V
43a1i 11 . . . 4 (𝐴 ∈ V → 𝐵 ∈ V)
52, 4preq1b 4813 . . 3 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
61, 5ax-mp 5 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)
76biimpi 216 1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  preqr2  4816  opthwiener  5477  opthhausdorff0  5481  cusgrfilem2  29391  usgr2wlkneq  29693  wopprc  43026
  Copyright terms: Public domain W3C validator