| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqr1 | Structured version Visualization version GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| preqr1.a | ⊢ 𝐴 ∈ V |
| preqr1.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr1 | ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | preqr1.b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 2, 4 | preq1b 4826 | . . 3 ⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵) |
| 7 | 6 | biimpi 216 | 1 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: preqr2 4829 opthwiener 5499 opthhausdorff0 5503 cusgrfilem2 29402 usgr2wlkneq 29704 wopprc 43005 |
| Copyright terms: Public domain | W3C validator |