MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc Structured version   Visualization version   GIF version

Theorem prprc 4767
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)

Proof of Theorem prprc
StepHypRef Expression
1 prprc1 4765 . 2 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
2 snprc 4717 . . 3 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 216 . 2 𝐵 ∈ V → {𝐵} = ∅)
41, 3sylan9eq 2797 1 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  {csn 4626  {cpr 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-un 3956  df-nul 4334  df-sn 4627  df-pr 4629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator