| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc | Structured version Visualization version GIF version | ||
| Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| prprc | ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4718 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snprc 4670 | . . 3 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
| 4 | 1, 3 | sylan9eq 2786 | 1 ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |