MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc Structured version   Visualization version   GIF version

Theorem prprc 4706
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)

Proof of Theorem prprc
StepHypRef Expression
1 prprc1 4704 . 2 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
2 snprc 4656 . . 3 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 215 . 2 𝐵 ∈ V → {𝐵} = ∅)
41, 3sylan9eq 2795 1 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1538  wcel 2103  Vcvv 3436  c0 4261  {csn 4564  {cpr 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-ext 2706
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1541  df-fal 1551  df-ex 1779  df-sb 2065  df-clab 2713  df-cleq 2727  df-clel 2813  df-v 3438  df-dif 3894  df-un 3896  df-nul 4262  df-sn 4565  df-pr 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator