| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc1 | Structured version Visualization version GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4667 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | uneq1 4108 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
| 3 | df-pr 4576 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | uncom 4105 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
| 5 | un0 4341 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
| 6 | 4, 5 | eqtr2i 2755 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
| 7 | 2, 3, 6 | 3eqtr4g 2791 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4280 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: prprc2 4716 prprc 4717 prneprprc 4810 prex 5373 prfi 9208 elprchashprn2 14303 prssbd 32510 elsprel 47514 |
| Copyright terms: Public domain | W3C validator |