![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc1 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4722 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | uneq1 4155 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
3 | df-pr 4632 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | uncom 4152 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
5 | un0 4391 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
6 | 4, 5 | eqtr2i 2757 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
7 | 2, 3, 6 | 3eqtr4g 2793 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 ∅c0 4323 {csn 4629 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-dif 3950 df-un 3952 df-nul 4324 df-sn 4630 df-pr 4632 |
This theorem is referenced by: prprc2 4771 prprc 4772 prneprprc 4862 prex 5434 elprchashprn2 14388 elsprel 46815 |
Copyright terms: Public domain | W3C validator |