MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4715
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4667 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4108 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4576 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4105 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4341 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2755 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2791 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 217 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  c0 4280  {csn 4573  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576
This theorem is referenced by:  prprc2  4716  prprc  4717  prneprprc  4810  prex  5373  prfi  9208  elprchashprn2  14303  prssbd  32510  elsprel  47514
  Copyright terms: Public domain W3C validator