MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4698
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4650 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4086 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4561 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4083 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4321 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2767 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2804 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 216 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {csn 4558  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  prprc2  4699  prprc  4700  prneprprc  4788  prex  5350  elprchashprn2  14039  elsprel  44815
  Copyright terms: Public domain W3C validator