MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4770
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4722 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4155 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4632 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4152 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4391 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2757 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2793 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 216 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  Vcvv 3471  cun 3945  c0 4323  {csn 4629  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-dif 3950  df-un 3952  df-nul 4324  df-sn 4630  df-pr 4632
This theorem is referenced by:  prprc2  4771  prprc  4772  prneprprc  4862  prex  5434  elprchashprn2  14388  elsprel  46815
  Copyright terms: Public domain W3C validator