![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc1 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4527 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | uneq1 4022 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
3 | df-pr 4444 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | uncom 4019 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
5 | un0 4231 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
6 | 4, 5 | eqtr2i 2804 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
7 | 2, 3, 6 | 3eqtr4g 2840 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
8 | 1, 7 | sylbi 209 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∪ cun 3828 ∅c0 4179 {csn 4441 {cpr 4443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-v 3418 df-dif 3833 df-un 3835 df-nul 4180 df-sn 4442 df-pr 4444 |
This theorem is referenced by: prprc2 4576 prprc 4577 prneprprc 4665 prex 5189 elprchashprn2 13570 elsprel 43003 |
Copyright terms: Public domain | W3C validator |