MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4701
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4653 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4090 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4564 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4087 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4324 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2767 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2803 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 216 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {csn 4561  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by:  prprc2  4702  prprc  4703  prneprprc  4791  prex  5355  elprchashprn2  14111  elsprel  44927
  Copyright terms: Public domain W3C validator