Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4575
 Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4527 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4022 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4444 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4019 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4231 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2804 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2840 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 209 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1507   ∈ wcel 2050  Vcvv 3416   ∪ cun 3828  ∅c0 4179  {csn 4441  {cpr 4443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-v 3418  df-dif 3833  df-un 3835  df-nul 4180  df-sn 4442  df-pr 4444 This theorem is referenced by:  prprc2  4576  prprc  4577  prneprprc  4665  prex  5189  elprchashprn2  13570  elsprel  43003
 Copyright terms: Public domain W3C validator