![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc1 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4721 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | uneq1 4156 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
3 | df-pr 4631 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | uncom 4153 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
5 | un0 4390 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
6 | 4, 5 | eqtr2i 2761 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
7 | 2, 3, 6 | 3eqtr4g 2797 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 ∅c0 4322 {csn 4628 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 |
This theorem is referenced by: prprc2 4770 prprc 4771 prneprprc 4861 prex 5432 elprchashprn2 14355 elsprel 46133 |
Copyright terms: Public domain | W3C validator |