![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc1 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4714 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | uneq1 4149 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
3 | df-pr 4624 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | uncom 4146 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
5 | un0 4383 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
6 | 4, 5 | eqtr2i 2753 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
7 | 2, 3, 6 | 3eqtr4g 2789 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∪ cun 3939 ∅c0 4315 {csn 4621 {cpr 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-un 3946 df-nul 4316 df-sn 4622 df-pr 4624 |
This theorem is referenced by: prprc2 4763 prprc 4764 prneprprc 4854 prex 5423 elprchashprn2 14357 elsprel 46689 |
Copyright terms: Public domain | W3C validator |