MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   GIF version

Theorem prprc1 4762
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4714 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 4149 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 4624 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 4146 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 4383 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2753 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2789 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 216 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cun 3939  c0 4315  {csn 4621  {cpr 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3944  df-un 3946  df-nul 4316  df-sn 4622  df-pr 4624
This theorem is referenced by:  prprc2  4763  prprc  4764  prneprprc  4854  prex  5423  elprchashprn2  14357  elsprel  46689
  Copyright terms: Public domain W3C validator