MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc2 Structured version   Visualization version   GIF version

Theorem prprc2 4771
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc2 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})

Proof of Theorem prprc2
StepHypRef Expression
1 prcom 4737 . 2 {𝐴, 𝐵} = {𝐵, 𝐴}
2 prprc1 4770 . 2 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴})
31, 2eqtrid 2787 1 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-pr 4634
This theorem is referenced by:  tpprceq3  4809  elpreqprlem  4871  prex  5443  prfi  9361  indislem  23023  1to2vfriswmgr  30308  indispconn  35219  bj-prmoore  37098  elsprel  47400
  Copyright terms: Public domain W3C validator