| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4708 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | prprc1 4741 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
| 3 | 1, 2 | eqtrid 2782 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: tpprceq3 4780 elpreqprlem 4842 prex 5407 prfi 9335 indislem 22938 1to2vfriswmgr 30260 prssad 32510 indispconn 35256 bj-prmoore 37133 elsprel 47489 |
| Copyright terms: Public domain | W3C validator |