| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4682 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | prprc1 4715 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
| 3 | 1, 2 | eqtrid 2778 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: tpprceq3 4753 elpreqprlem 4815 prex 5373 prfi 9208 indislem 22915 1to2vfriswmgr 30259 prssad 32509 indispconn 35278 bj-prmoore 37157 elsprel 47514 |
| Copyright terms: Public domain | W3C validator |