| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4684 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | prprc1 4717 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
| 3 | 1, 2 | eqtrid 2776 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: tpprceq3 4755 elpreqprlem 4817 prex 5376 prfi 9213 indislem 22885 1to2vfriswmgr 30223 prssad 32473 indispconn 35207 bj-prmoore 37089 elsprel 47459 |
| Copyright terms: Public domain | W3C validator |