Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4665 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | prprc1 4698 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
3 | 1, 2 | eqtrid 2790 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: tpprceq3 4734 elpreqprlem 4793 prex 5350 indislem 22058 1to2vfriswmgr 28544 indispconn 33096 bj-prmoore 35213 elsprel 44815 |
Copyright terms: Public domain | W3C validator |