MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc2 Structured version   Visualization version   GIF version

Theorem prprc2 4770
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc2 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})

Proof of Theorem prprc2
StepHypRef Expression
1 prcom 4736 . 2 {𝐴, 𝐵} = {𝐵, 𝐴}
2 prprc1 4769 . 2 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴})
31, 2eqtrid 2784 1 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628  {cpr 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631
This theorem is referenced by:  tpprceq3  4807  elpreqprlem  4866  prex  5432  indislem  22502  1to2vfriswmgr  29529  indispconn  34220  bj-prmoore  35991  elsprel  46133
  Copyright terms: Public domain W3C validator