Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4678 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | prprc1 4711 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
3 | 1, 2 | eqtrid 2789 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4571 {cpr 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3900 df-un 3902 df-nul 4268 df-sn 4572 df-pr 4574 |
This theorem is referenced by: tpprceq3 4749 elpreqprlem 4808 prex 5370 indislem 22222 1to2vfriswmgr 28752 indispconn 33301 bj-prmoore 35342 elsprel 45179 |
Copyright terms: Public domain | W3C validator |