| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > porpss | Structured version Visualization version GIF version | ||
| Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| porpss | ⊢ [⊊] Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr 4050 | . . . . 5 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | psstr 4054 | . . . . 5 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
| 3 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | brrpss 7659 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥) |
| 5 | 4 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥) |
| 6 | vex 3440 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 7 | 6 | brrpss 7659 | . . . . . . . 8 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
| 8 | vex 3440 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 9 | 8 | brrpss 7659 | . . . . . . . 8 ⊢ (𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧) |
| 10 | 7, 9 | anbi12i 628 | . . . . . . 7 ⊢ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧)) |
| 11 | 8 | brrpss 7659 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧) |
| 12 | 10, 11 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧)) |
| 13 | 5, 12 | anbi12i 628 | . . . . 5 ⊢ ((¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) ↔ (¬ 𝑥 ⊊ 𝑥 ∧ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
| 14 | 1, 2, 13 | mpbir2an 711 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 15 | 14 | rgenw 3051 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 16 | 15 | rgen2w 3052 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 17 | df-po 5522 | . 2 ⊢ ( [⊊] Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ [⊊] Po 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3047 ⊊ wpss 3898 class class class wbr 5089 Po wpo 5520 [⊊] crpss 7655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-po 5522 df-xp 5620 df-rel 5621 df-rpss 7656 |
| This theorem is referenced by: sorpss 7661 fin23lem40 10242 isfin1-3 10277 zorng 10395 fin2so 37646 |
| Copyright terms: Public domain | W3C validator |