Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > porpss | Structured version Visualization version GIF version |
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
porpss | ⊢ [⊊] Po 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssirr 4031 | . . . . 5 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
2 | psstr 4035 | . . . . 5 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
3 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 3 | brrpss 7557 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥) |
5 | 4 | notbii 319 | . . . . . 6 ⊢ (¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥) |
6 | vex 3426 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 6 | brrpss 7557 | . . . . . . . 8 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
8 | vex 3426 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
9 | 8 | brrpss 7557 | . . . . . . . 8 ⊢ (𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧) |
10 | 7, 9 | anbi12i 626 | . . . . . . 7 ⊢ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧)) |
11 | 8 | brrpss 7557 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧) |
12 | 10, 11 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧)) |
13 | 5, 12 | anbi12i 626 | . . . . 5 ⊢ ((¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) ↔ (¬ 𝑥 ⊊ 𝑥 ∧ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
14 | 1, 2, 13 | mpbir2an 707 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
15 | 14 | rgenw 3075 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
16 | 15 | rgen2w 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
17 | df-po 5494 | . 2 ⊢ ( [⊊] Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧))) | |
18 | 16, 17 | mpbir 230 | 1 ⊢ [⊊] Po 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3063 ⊊ wpss 3884 class class class wbr 5070 Po wpo 5492 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: sorpss 7559 fin23lem40 10038 isfin1-3 10073 zorng 10191 fin2so 35691 |
Copyright terms: Public domain | W3C validator |