MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  porpss Structured version   Visualization version   GIF version

Theorem porpss 7433
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
porpss [] Po 𝐴

Proof of Theorem porpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4028 . . . . 5 ¬ 𝑥𝑥
2 psstr 4032 . . . . 5 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
3 vex 3444 . . . . . . . 8 𝑥 ∈ V
43brrpss 7432 . . . . . . 7 (𝑥 [] 𝑥𝑥𝑥)
54notbii 323 . . . . . 6 𝑥 [] 𝑥 ↔ ¬ 𝑥𝑥)
6 vex 3444 . . . . . . . . 9 𝑦 ∈ V
76brrpss 7432 . . . . . . . 8 (𝑥 [] 𝑦𝑥𝑦)
8 vex 3444 . . . . . . . . 9 𝑧 ∈ V
98brrpss 7432 . . . . . . . 8 (𝑦 [] 𝑧𝑦𝑧)
107, 9anbi12i 629 . . . . . . 7 ((𝑥 [] 𝑦𝑦 [] 𝑧) ↔ (𝑥𝑦𝑦𝑧))
118brrpss 7432 . . . . . . 7 (𝑥 [] 𝑧𝑥𝑧)
1210, 11imbi12i 354 . . . . . 6 (((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
135, 12anbi12i 629 . . . . 5 ((¬ 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)) ↔ (¬ 𝑥𝑥 ∧ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
141, 2, 13mpbir2an 710 . . . 4 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1514rgenw 3118 . . 3 𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1615rgen2w 3119 . 2 𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
17 df-po 5438 . 2 ( [] Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)))
1816, 17mpbir 234 1 [] Po 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wral 3106  wpss 3882   class class class wbr 5030   Po wpo 5436   [] crpss 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-po 5438  df-xp 5525  df-rel 5526  df-rpss 7429
This theorem is referenced by:  sorpss  7434  fin23lem40  9762  isfin1-3  9797  zorng  9915  fin2so  35044
  Copyright terms: Public domain W3C validator