MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  porpss Structured version   Visualization version   GIF version

Theorem porpss 7762
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
porpss [] Po 𝐴

Proof of Theorem porpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4126 . . . . 5 ¬ 𝑥𝑥
2 psstr 4130 . . . . 5 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
3 vex 3492 . . . . . . . 8 𝑥 ∈ V
43brrpss 7761 . . . . . . 7 (𝑥 [] 𝑥𝑥𝑥)
54notbii 320 . . . . . 6 𝑥 [] 𝑥 ↔ ¬ 𝑥𝑥)
6 vex 3492 . . . . . . . . 9 𝑦 ∈ V
76brrpss 7761 . . . . . . . 8 (𝑥 [] 𝑦𝑥𝑦)
8 vex 3492 . . . . . . . . 9 𝑧 ∈ V
98brrpss 7761 . . . . . . . 8 (𝑦 [] 𝑧𝑦𝑧)
107, 9anbi12i 627 . . . . . . 7 ((𝑥 [] 𝑦𝑦 [] 𝑧) ↔ (𝑥𝑦𝑦𝑧))
118brrpss 7761 . . . . . . 7 (𝑥 [] 𝑧𝑥𝑧)
1210, 11imbi12i 350 . . . . . 6 (((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
135, 12anbi12i 627 . . . . 5 ((¬ 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)) ↔ (¬ 𝑥𝑥 ∧ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
141, 2, 13mpbir2an 710 . . . 4 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1514rgenw 3071 . . 3 𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1615rgen2w 3072 . 2 𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
17 df-po 5607 . 2 ( [] Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)))
1816, 17mpbir 231 1 [] Po 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3067  wpss 3977   class class class wbr 5166   Po wpo 5605   [] crpss 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-po 5607  df-xp 5706  df-rel 5707  df-rpss 7758
This theorem is referenced by:  sorpss  7763  fin23lem40  10420  isfin1-3  10455  zorng  10573  fin2so  37567
  Copyright terms: Public domain W3C validator