| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > porpss | Structured version Visualization version GIF version | ||
| Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| porpss | ⊢ [⊊] Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr 4069 | . . . . 5 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | psstr 4073 | . . . . 5 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
| 3 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | brrpss 7705 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥) |
| 5 | 4 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥) |
| 6 | vex 3454 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 7 | 6 | brrpss 7705 | . . . . . . . 8 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
| 8 | vex 3454 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 9 | 8 | brrpss 7705 | . . . . . . . 8 ⊢ (𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧) |
| 10 | 7, 9 | anbi12i 628 | . . . . . . 7 ⊢ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧)) |
| 11 | 8 | brrpss 7705 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧) |
| 12 | 10, 11 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧)) |
| 13 | 5, 12 | anbi12i 628 | . . . . 5 ⊢ ((¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) ↔ (¬ 𝑥 ⊊ 𝑥 ∧ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
| 14 | 1, 2, 13 | mpbir2an 711 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 15 | 14 | rgenw 3049 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 16 | 15 | rgen2w 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 17 | df-po 5549 | . 2 ⊢ ( [⊊] Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ [⊊] Po 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3045 ⊊ wpss 3918 class class class wbr 5110 Po wpo 5547 [⊊] crpss 7701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-po 5549 df-xp 5647 df-rel 5648 df-rpss 7702 |
| This theorem is referenced by: sorpss 7707 fin23lem40 10311 isfin1-3 10346 zorng 10464 fin2so 37608 |
| Copyright terms: Public domain | W3C validator |