MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  porpss Structured version   Visualization version   GIF version

Theorem porpss 7558
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
porpss [] Po 𝐴

Proof of Theorem porpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4031 . . . . 5 ¬ 𝑥𝑥
2 psstr 4035 . . . . 5 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
3 vex 3426 . . . . . . . 8 𝑥 ∈ V
43brrpss 7557 . . . . . . 7 (𝑥 [] 𝑥𝑥𝑥)
54notbii 319 . . . . . 6 𝑥 [] 𝑥 ↔ ¬ 𝑥𝑥)
6 vex 3426 . . . . . . . . 9 𝑦 ∈ V
76brrpss 7557 . . . . . . . 8 (𝑥 [] 𝑦𝑥𝑦)
8 vex 3426 . . . . . . . . 9 𝑧 ∈ V
98brrpss 7557 . . . . . . . 8 (𝑦 [] 𝑧𝑦𝑧)
107, 9anbi12i 626 . . . . . . 7 ((𝑥 [] 𝑦𝑦 [] 𝑧) ↔ (𝑥𝑦𝑦𝑧))
118brrpss 7557 . . . . . . 7 (𝑥 [] 𝑧𝑥𝑧)
1210, 11imbi12i 350 . . . . . 6 (((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
135, 12anbi12i 626 . . . . 5 ((¬ 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)) ↔ (¬ 𝑥𝑥 ∧ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
141, 2, 13mpbir2an 707 . . . 4 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1514rgenw 3075 . . 3 𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1615rgen2w 3076 . 2 𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
17 df-po 5494 . 2 ( [] Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)))
1816, 17mpbir 230 1 [] Po 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3063  wpss 3884   class class class wbr 5070   Po wpo 5492   [] crpss 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5494  df-xp 5586  df-rel 5587  df-rpss 7554
This theorem is referenced by:  sorpss  7559  fin23lem40  10038  isfin1-3  10073  zorng  10191  fin2so  35691
  Copyright terms: Public domain W3C validator