| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > porpss | Structured version Visualization version GIF version | ||
| Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| porpss | ⊢ [⊊] Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr 4083 | . . . . 5 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | psstr 4087 | . . . . 5 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
| 3 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | brrpss 7725 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥) |
| 5 | 4 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥) |
| 6 | vex 3468 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 7 | 6 | brrpss 7725 | . . . . . . . 8 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
| 8 | vex 3468 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 9 | 8 | brrpss 7725 | . . . . . . . 8 ⊢ (𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧) |
| 10 | 7, 9 | anbi12i 628 | . . . . . . 7 ⊢ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧)) |
| 11 | 8 | brrpss 7725 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧) |
| 12 | 10, 11 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧)) |
| 13 | 5, 12 | anbi12i 628 | . . . . 5 ⊢ ((¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) ↔ (¬ 𝑥 ⊊ 𝑥 ∧ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
| 14 | 1, 2, 13 | mpbir2an 711 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 15 | 14 | rgenw 3056 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 16 | 15 | rgen2w 3057 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
| 17 | df-po 5566 | . 2 ⊢ ( [⊊] Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ [⊊] Po 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3052 ⊊ wpss 3932 class class class wbr 5124 Po wpo 5564 [⊊] crpss 7721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-xp 5665 df-rel 5666 df-rpss 7722 |
| This theorem is referenced by: sorpss 7727 fin23lem40 10370 isfin1-3 10405 zorng 10523 fin2so 37636 |
| Copyright terms: Public domain | W3C validator |