MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne0 Structured version   Visualization version   GIF version

Theorem pwne0 5279
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.)
Assertion
Ref Expression
pwne0 𝒫 𝐴 ≠ ∅

Proof of Theorem pwne0
StepHypRef Expression
1 0elpw 5278 . 2 ∅ ∈ 𝒫 𝐴
21ne0ii 4271 1 𝒫 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2943  c0 4256  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535
This theorem is referenced by:  undefne0  8095  afv20defat  44724
  Copyright terms: Public domain W3C validator