Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwne0 | Structured version Visualization version GIF version |
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
Ref | Expression |
---|---|
pwne0 | ⊢ 𝒫 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5247 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | 1 | ne0ii 4252 | 1 ⊢ 𝒫 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2940 ∅c0 4237 𝒫 cpw 4513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3410 df-dif 3869 df-in 3873 df-ss 3883 df-nul 4238 df-pw 4515 |
This theorem is referenced by: undefne0 8021 afv20defat 44396 |
Copyright terms: Public domain | W3C validator |