![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwne0 | Structured version Visualization version GIF version |
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
Ref | Expression |
---|---|
pwne0 | ⊢ 𝒫 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5374 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | 1 | ne0ii 4367 | 1 ⊢ 𝒫 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-pw 4624 |
This theorem is referenced by: undefne0 8320 afv20defat 47147 |
Copyright terms: Public domain | W3C validator |