MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne0 Structured version   Visualization version   GIF version

Theorem pwne0 5295
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.)
Assertion
Ref Expression
pwne0 𝒫 𝐴 ≠ ∅

Proof of Theorem pwne0
StepHypRef Expression
1 0elpw 5294 . 2 ∅ ∈ 𝒫 𝐴
21ne0ii 4294 1 𝒫 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2928  c0 4283  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-ss 3919  df-nul 4284  df-pw 4552
This theorem is referenced by:  undefne0  8209  afv20defat  47269
  Copyright terms: Public domain W3C validator