| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwne0 | Structured version Visualization version GIF version | ||
| Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
| Ref | Expression |
|---|---|
| pwne0 | ⊢ 𝒫 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5355 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | 1 | ne0ii 4343 | 1 ⊢ 𝒫 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2939 ∅c0 4332 𝒫 cpw 4599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-dif 3953 df-ss 3967 df-nul 4333 df-pw 4601 |
| This theorem is referenced by: undefne0 8305 afv20defat 47249 |
| Copyright terms: Public domain | W3C validator |