MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne0 Structured version   Visualization version   GIF version

Theorem pwne0 5248
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.)
Assertion
Ref Expression
pwne0 𝒫 𝐴 ≠ ∅

Proof of Theorem pwne0
StepHypRef Expression
1 0elpw 5247 . 2 ∅ ∈ 𝒫 𝐴
21ne0ii 4252 1 𝒫 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2940  c0 4237  𝒫 cpw 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238  df-pw 4515
This theorem is referenced by:  undefne0  8021  afv20defat  44396
  Copyright terms: Public domain W3C validator