Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwne0 | Structured version Visualization version GIF version |
Description: A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
Ref | Expression |
---|---|
pwne0 | ⊢ 𝒫 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5273 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | 1 | ne0ii 4268 | 1 ⊢ 𝒫 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 ∅c0 4253 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 |
This theorem is referenced by: undefne0 8066 afv20defat 44611 |
Copyright terms: Public domain | W3C validator |