![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4406 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4609 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 df-pw 4607 |
This theorem is referenced by: pwne0 5363 marypha1lem 9471 brwdom2 9611 canthwdom 9617 isfin1-3 10424 canthp1lem2 10691 ixxssxr 13396 incexc 15870 smupf 16512 hashbc0 17039 ramz2 17058 mreexexlem3d 17691 acsfn 17704 isdrs2 18364 fpwipodrs 18598 pwmndid 18962 pwmnd 18963 clsval2 23074 mretopd 23116 comppfsc 23556 alexsubALTlem2 24072 alexsubALTlem4 24074 0sno 27886 bday0s 27888 0slt1s 27889 bday0b 27890 madessno 27914 oldssno 27915 newssno 27916 lltropt 27926 made0 27927 nohalf 28422 eupth2lems 30267 esum0 34030 esumcst 34044 esumpcvgval 34059 prsiga 34112 pwldsys 34138 ldgenpisyslem1 34144 carsggect 34300 kur14 35201 0hf 36159 bj-tagss 36963 bj-0int 37084 bj-mooreset 37085 bj-ismoored0 37089 topdifinfindis 37329 0totbnd 37760 heiborlem6 37803 istopclsd 42688 ntrkbimka 44028 ntrk0kbimka 44029 clsk1indlem0 44031 ntrclscls00 44056 ntrneicls11 44080 ismnushort 44297 0pwfi 44999 dvnprodlem3 45904 pwsal 46271 salexct 46290 sge0rnn0 46324 sge00 46332 psmeasure 46427 caragen0 46462 0ome 46485 isomenndlem 46486 ovn0 46522 ovnsubadd2lem 46601 smfresal 46744 sprsymrelfvlem 47415 lincval0 48261 lco0 48273 linds0 48311 |
Copyright terms: Public domain | W3C validator |