Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4331 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5232 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4538 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ⊆ wss 3888 ∅c0 4257 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-dif 3891 df-in 3895 df-ss 3905 df-nul 4258 df-pw 4536 |
This theorem is referenced by: pwne0 5280 marypha1lem 9201 brwdom2 9341 canthwdom 9347 isfin1-3 10151 canthp1lem2 10418 ixxssxr 13100 incexc 15558 smupf 16194 hashbc0 16715 ramz2 16734 mreexexlem3d 17364 acsfn 17377 isdrs2 18033 fpwipodrs 18267 pwmndid 18584 pwmnd 18585 clsval2 22210 mretopd 22252 comppfsc 22692 alexsubALTlem2 23208 alexsubALTlem4 23210 eupth2lems 28611 esum0 32026 esumcst 32040 esumpcvgval 32055 prsiga 32108 pwldsys 32134 ldgenpisyslem1 32140 carsggect 32294 kur14 33187 0sno 34029 bday0s 34031 0slt1s 34032 bday0b 34033 madessno 34053 oldssno 34054 newssno 34055 made0 34066 0hf 34488 bj-tagss 35179 bj-0int 35281 bj-mooreset 35282 bj-ismoored0 35286 topdifinfindis 35526 0totbnd 35940 heiborlem6 35983 istopclsd 40529 ntrkbimka 41655 ntrk0kbimka 41656 clsk1indlem0 41658 ntrclscls00 41683 ntrneicls11 41707 ismnushort 41926 0pwfi 42614 dvnprodlem3 43496 pwsal 43863 salexct 43880 sge0rnn0 43913 sge00 43921 psmeasure 44016 caragen0 44051 0ome 44074 isomenndlem 44075 ovn0 44111 ovnsubadd2lem 44190 smfresal 44333 sprsymrelfvlem 44953 lincval0 45767 lco0 45779 linds0 45817 |
Copyright terms: Public domain | W3C validator |