| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4353 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 4557 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-ss 3922 df-nul 4287 df-pw 4555 |
| This theorem is referenced by: pwne0 5299 marypha1lem 9342 brwdom2 9484 canthwdom 9490 isfin1-3 10299 canthp1lem2 10566 ixxssxr 13278 incexc 15762 smupf 16407 hashbc0 16935 ramz2 16954 mreexexlem3d 17570 acsfn 17583 isdrs2 18230 fpwipodrs 18464 pwmndid 18828 pwmnd 18829 clsval2 22953 mretopd 22995 comppfsc 23435 alexsubALTlem2 23951 alexsubALTlem4 23953 0sno 27758 bday0s 27760 0slt1s 27761 bday0b 27762 madessno 27788 oldssno 27789 newssno 27790 lltropt 27804 made0 27805 eupth2lems 30200 esum0 34015 esumcst 34029 esumpcvgval 34044 prsiga 34097 pwldsys 34123 ldgenpisyslem1 34129 carsggect 34285 kur14 35188 0hf 36150 bj-tagss 36953 bj-0int 37074 bj-mooreset 37075 bj-ismoored0 37079 topdifinfindis 37319 0totbnd 37752 heiborlem6 37795 istopclsd 42673 ntrkbimka 44011 ntrk0kbimka 44012 clsk1indlem0 44014 ntrclscls00 44039 ntrneicls11 44063 ismnushort 44274 0pwfi 45037 dvnprodlem3 45930 pwsal 46297 salexct 46316 sge0rnn0 46350 sge00 46358 psmeasure 46453 caragen0 46488 0ome 46511 isomenndlem 46512 ovn0 46548 ovnsubadd2lem 46627 smfresal 46770 sprsymrelfvlem 47475 lincval0 48401 lco0 48413 linds0 48451 |
| Copyright terms: Public domain | W3C validator |