| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4349 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 4553 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-pw 4551 |
| This theorem is referenced by: pwne0 5297 marypha1lem 9324 brwdom2 9466 canthwdom 9472 isfin1-3 10284 canthp1lem2 10551 ixxssxr 13259 incexc 15746 smupf 16391 hashbc0 16919 ramz2 16938 mreexexlem3d 17554 acsfn 17567 isdrs2 18214 fpwipodrs 18448 pwmndid 18846 pwmnd 18847 clsval2 22966 mretopd 23008 comppfsc 23448 alexsubALTlem2 23964 alexsubALTlem4 23966 0sno 27771 bday0s 27773 0slt1s 27774 bday0b 27775 rightpos 27783 madessno 27802 oldssno 27803 newssno 27804 lltropt 27818 made0 27819 eupth2lems 30220 esum0 34083 esumcst 34097 esumpcvgval 34112 prsiga 34165 pwldsys 34191 ldgenpisyslem1 34197 carsggect 34352 kur14 35281 0hf 36242 bj-tagss 37045 bj-0int 37166 bj-mooreset 37167 bj-ismoored0 37171 topdifinfindis 37411 0totbnd 37833 heiborlem6 37876 istopclsd 42817 ntrkbimka 44155 ntrk0kbimka 44156 clsk1indlem0 44158 ntrclscls00 44183 ntrneicls11 44207 ismnushort 44418 0pwfi 45180 dvnprodlem3 46070 pwsal 46437 salexct 46456 sge0rnn0 46490 sge00 46498 psmeasure 46593 caragen0 46628 0ome 46651 isomenndlem 46652 ovn0 46688 ovnsubadd2lem 46767 smfresal 46910 sprsymrelfvlem 47614 lincval0 48540 lco0 48552 linds0 48590 |
| Copyright terms: Public domain | W3C validator |