Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4534 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 |
This theorem is referenced by: pwne0 5274 marypha1lem 9122 brwdom2 9262 canthwdom 9268 isfin1-3 10073 canthp1lem2 10340 ixxssxr 13020 incexc 15477 smupf 16113 hashbc0 16634 ramz2 16653 mreexexlem3d 17272 acsfn 17285 isdrs2 17939 fpwipodrs 18173 pwmndid 18490 pwmnd 18491 clsval2 22109 mretopd 22151 comppfsc 22591 alexsubALTlem2 23107 alexsubALTlem4 23109 eupth2lems 28503 esum0 31917 esumcst 31931 esumpcvgval 31946 prsiga 31999 pwldsys 32025 ldgenpisyslem1 32031 carsggect 32185 kur14 33078 0sno 33947 bday0s 33949 0slt1s 33950 bday0b 33951 madessno 33971 oldssno 33972 newssno 33973 made0 33984 0hf 34406 bj-tagss 35097 bj-0int 35199 bj-mooreset 35200 bj-ismoored0 35204 topdifinfindis 35444 0totbnd 35858 heiborlem6 35901 istopclsd 40438 ntrkbimka 41537 ntrk0kbimka 41538 clsk1indlem0 41540 ntrclscls00 41565 ntrneicls11 41589 ismnushort 41808 0pwfi 42496 dvnprodlem3 43379 pwsal 43746 salexct 43763 sge0rnn0 43796 sge00 43804 psmeasure 43899 caragen0 43934 0ome 43957 isomenndlem 43958 ovn0 43994 ovnsubadd2lem 44073 smfresal 44209 sprsymrelfvlem 44830 lincval0 45644 lco0 45656 linds0 45694 |
Copyright terms: Public domain | W3C validator |