![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4264 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5096 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4453 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 232 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2079 ⊆ wss 3854 ∅c0 4206 𝒫 cpw 4447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 ax-nul 5095 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-v 3434 df-dif 3857 df-in 3861 df-ss 3869 df-nul 4207 df-pw 4449 |
This theorem is referenced by: pwne0 5141 marypha1lem 8733 brwdom2 8873 canthwdom 8879 isfin1-3 9643 canthp1lem2 9910 ixxssxr 12589 incexc 15013 smupf 15648 hashbc0 16158 ramz2 16177 mreexexlem3d 16734 acsfn 16747 isdrs2 17366 fpwipodrs 17591 clsval2 21330 mretopd 21372 comppfsc 21812 alexsubALTlem2 22328 alexsubALTlem4 22330 eupth2lems 27693 esum0 30881 esumcst 30895 esumpcvgval 30910 prsiga 30963 pwldsys 30989 ldgenpisyslem1 30995 carsggect 31149 kur14 32027 0hf 33192 bj-tagss 33843 bj-0int 33938 bj-mooreset 33939 bj-ismoored0 33944 topdifinfindis 34104 0totbnd 34529 heiborlem6 34572 istopclsd 38732 ntrkbimka 39824 ntrk0kbimka 39825 clsk1indlem0 39827 ntrclscls00 39852 ntrneicls11 39876 0pwfi 40812 dvnprodlem3 41728 pwsal 42096 salexct 42113 sge0rnn0 42146 sge00 42154 psmeasure 42249 caragen0 42284 0ome 42307 isomenndlem 42308 ovn0 42344 ovnsubadd2lem 42423 smfresal 42559 sprsymrelfvlem 43088 lincval0 43904 lco0 43916 linds0 43954 |
Copyright terms: Public domain | W3C validator |