![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4626 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-pw 4624 |
This theorem is referenced by: pwne0 5375 marypha1lem 9502 brwdom2 9642 canthwdom 9648 isfin1-3 10455 canthp1lem2 10722 ixxssxr 13419 incexc 15885 smupf 16524 hashbc0 17052 ramz2 17071 mreexexlem3d 17704 acsfn 17717 isdrs2 18376 fpwipodrs 18610 pwmndid 18971 pwmnd 18972 clsval2 23079 mretopd 23121 comppfsc 23561 alexsubALTlem2 24077 alexsubALTlem4 24079 0sno 27889 bday0s 27891 0slt1s 27892 bday0b 27893 madessno 27917 oldssno 27918 newssno 27919 lltropt 27929 made0 27930 nohalf 28425 eupth2lems 30270 esum0 34013 esumcst 34027 esumpcvgval 34042 prsiga 34095 pwldsys 34121 ldgenpisyslem1 34127 carsggect 34283 kur14 35184 0hf 36141 bj-tagss 36946 bj-0int 37067 bj-mooreset 37068 bj-ismoored0 37072 topdifinfindis 37312 0totbnd 37733 heiborlem6 37776 istopclsd 42656 ntrkbimka 44000 ntrk0kbimka 44001 clsk1indlem0 44003 ntrclscls00 44028 ntrneicls11 44052 ismnushort 44270 0pwfi 44961 dvnprodlem3 45869 pwsal 46236 salexct 46255 sge0rnn0 46289 sge00 46297 psmeasure 46392 caragen0 46427 0ome 46450 isomenndlem 46451 ovn0 46487 ovnsubadd2lem 46566 smfresal 46709 sprsymrelfvlem 47364 lincval0 48144 lco0 48156 linds0 48194 |
Copyright terms: Public domain | W3C validator |