| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4350 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 4554 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 df-pw 4552 |
| This theorem is referenced by: pwne0 5295 marypha1lem 9317 brwdom2 9459 canthwdom 9465 isfin1-3 10274 canthp1lem2 10541 ixxssxr 13254 incexc 15741 smupf 16386 hashbc0 16914 ramz2 16933 mreexexlem3d 17549 acsfn 17562 isdrs2 18209 fpwipodrs 18443 pwmndid 18841 pwmnd 18842 clsval2 22963 mretopd 23005 comppfsc 23445 alexsubALTlem2 23961 alexsubALTlem4 23963 0sno 27768 bday0s 27770 0slt1s 27771 bday0b 27772 rightpos 27780 madessno 27799 oldssno 27800 newssno 27801 lltropt 27815 made0 27816 eupth2lems 30213 esum0 34057 esumcst 34071 esumpcvgval 34086 prsiga 34139 pwldsys 34165 ldgenpisyslem1 34171 carsggect 34326 kur14 35248 0hf 36210 bj-tagss 37013 bj-0int 37134 bj-mooreset 37135 bj-ismoored0 37139 topdifinfindis 37379 0totbnd 37812 heiborlem6 37855 istopclsd 42732 ntrkbimka 44070 ntrk0kbimka 44071 clsk1indlem0 44073 ntrclscls00 44098 ntrneicls11 44122 ismnushort 44333 0pwfi 45095 dvnprodlem3 45985 pwsal 46352 salexct 46371 sge0rnn0 46405 sge00 46413 psmeasure 46508 caragen0 46543 0ome 46566 isomenndlem 46567 ovn0 46603 ovnsubadd2lem 46682 smfresal 46825 sprsymrelfvlem 47520 lincval0 48446 lco0 48458 linds0 48496 |
| Copyright terms: Public domain | W3C validator |