| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 4567 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-pw 4565 |
| This theorem is referenced by: pwne0 5312 marypha1lem 9384 brwdom2 9526 canthwdom 9532 isfin1-3 10339 canthp1lem2 10606 ixxssxr 13318 incexc 15803 smupf 16448 hashbc0 16976 ramz2 16995 mreexexlem3d 17607 acsfn 17620 isdrs2 18267 fpwipodrs 18499 pwmndid 18863 pwmnd 18864 clsval2 22937 mretopd 22979 comppfsc 23419 alexsubALTlem2 23935 alexsubALTlem4 23937 0sno 27738 bday0s 27740 0slt1s 27741 bday0b 27742 madessno 27768 oldssno 27769 newssno 27770 lltropt 27784 made0 27785 eupth2lems 30167 esum0 34039 esumcst 34053 esumpcvgval 34068 prsiga 34121 pwldsys 34147 ldgenpisyslem1 34153 carsggect 34309 kur14 35203 0hf 36165 bj-tagss 36968 bj-0int 37089 bj-mooreset 37090 bj-ismoored0 37094 topdifinfindis 37334 0totbnd 37767 heiborlem6 37810 istopclsd 42688 ntrkbimka 44027 ntrk0kbimka 44028 clsk1indlem0 44030 ntrclscls00 44055 ntrneicls11 44079 ismnushort 44290 0pwfi 45053 dvnprodlem3 45946 pwsal 46313 salexct 46332 sge0rnn0 46366 sge00 46374 psmeasure 46469 caragen0 46504 0ome 46527 isomenndlem 46528 ovn0 46564 ovnsubadd2lem 46643 smfresal 46786 sprsymrelfvlem 47488 lincval0 48401 lco0 48413 linds0 48451 |
| Copyright terms: Public domain | W3C validator |