Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4340 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5244 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4547 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3896 ∅c0 4266 𝒫 cpw 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-nul 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3899 df-in 3903 df-ss 3913 df-nul 4267 df-pw 4545 |
This theorem is referenced by: pwne0 5292 marypha1lem 9260 brwdom2 9400 canthwdom 9406 isfin1-3 10212 canthp1lem2 10479 ixxssxr 13161 incexc 15618 smupf 16254 hashbc0 16773 ramz2 16792 mreexexlem3d 17422 acsfn 17435 isdrs2 18091 fpwipodrs 18325 pwmndid 18642 pwmnd 18643 clsval2 22272 mretopd 22314 comppfsc 22754 alexsubALTlem2 23270 alexsubALTlem4 23272 eupth2lems 28710 esum0 32123 esumcst 32137 esumpcvgval 32152 prsiga 32205 pwldsys 32231 ldgenpisyslem1 32237 carsggect 32391 kur14 33284 0sno 34081 bday0s 34083 0slt1s 34084 bday0b 34085 madessno 34105 oldssno 34106 newssno 34107 made0 34118 0hf 34540 bj-tagss 35230 bj-0int 35332 bj-mooreset 35333 bj-ismoored0 35337 topdifinfindis 35577 0totbnd 35991 heiborlem6 36034 istopclsd 40732 ntrkbimka 41876 ntrk0kbimka 41877 clsk1indlem0 41879 ntrclscls00 41904 ntrneicls11 41928 ismnushort 42147 0pwfi 42835 dvnprodlem3 43733 pwsal 44100 salexct 44117 sge0rnn0 44151 sge00 44159 psmeasure 44254 caragen0 44289 0ome 44312 isomenndlem 44313 ovn0 44349 ovnsubadd2lem 44428 smfresal 44571 sprsymrelfvlem 45201 lincval0 46015 lco0 46027 linds0 46065 |
Copyright terms: Public domain | W3C validator |