| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 4584 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-pw 4582 |
| This theorem is referenced by: pwne0 5332 marypha1lem 9450 brwdom2 9592 canthwdom 9598 isfin1-3 10405 canthp1lem2 10672 ixxssxr 13379 incexc 15858 smupf 16502 hashbc0 17030 ramz2 17049 mreexexlem3d 17663 acsfn 17676 isdrs2 18323 fpwipodrs 18555 pwmndid 18919 pwmnd 18920 clsval2 22993 mretopd 23035 comppfsc 23475 alexsubALTlem2 23991 alexsubALTlem4 23993 0sno 27795 bday0s 27797 0slt1s 27798 bday0b 27799 madessno 27825 oldssno 27826 newssno 27827 lltropt 27841 made0 27842 eupth2lems 30224 esum0 34085 esumcst 34099 esumpcvgval 34114 prsiga 34167 pwldsys 34193 ldgenpisyslem1 34199 carsggect 34355 kur14 35243 0hf 36200 bj-tagss 37003 bj-0int 37124 bj-mooreset 37125 bj-ismoored0 37129 topdifinfindis 37369 0totbnd 37802 heiborlem6 37845 istopclsd 42690 ntrkbimka 44029 ntrk0kbimka 44030 clsk1indlem0 44032 ntrclscls00 44057 ntrneicls11 44081 ismnushort 44292 0pwfi 45050 dvnprodlem3 45944 pwsal 46311 salexct 46330 sge0rnn0 46364 sge00 46372 psmeasure 46467 caragen0 46502 0ome 46525 isomenndlem 46526 ovn0 46562 ovnsubadd2lem 46641 smfresal 46784 sprsymrelfvlem 47471 lincval0 48358 lco0 48370 linds0 48408 |
| Copyright terms: Public domain | W3C validator |