Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4293 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 5178 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4499 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 234 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ⊆ wss 3859 ∅c0 4226 𝒫 cpw 4495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-nul 5177 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-dif 3862 df-in 3866 df-ss 3876 df-nul 4227 df-pw 4497 |
This theorem is referenced by: pwne0 5226 marypha1lem 8931 brwdom2 9071 canthwdom 9077 isfin1-3 9847 canthp1lem2 10114 ixxssxr 12792 incexc 15241 smupf 15878 hashbc0 16397 ramz2 16416 mreexexlem3d 16976 acsfn 16989 isdrs2 17616 fpwipodrs 17841 pwmndid 18168 pwmnd 18169 clsval2 21751 mretopd 21793 comppfsc 22233 alexsubALTlem2 22749 alexsubALTlem4 22751 eupth2lems 28123 esum0 31537 esumcst 31551 esumpcvgval 31566 prsiga 31619 pwldsys 31645 ldgenpisyslem1 31651 carsggect 31805 kur14 32695 0sno 33581 bday0s 33583 0slt1s 33584 bday0b 33585 made0 33615 0hf 34029 bj-tagss 34698 bj-0int 34797 bj-mooreset 34798 bj-ismoored0 34802 topdifinfindis 35044 0totbnd 35492 heiborlem6 35535 istopclsd 40015 ntrkbimka 41115 ntrk0kbimka 41116 clsk1indlem0 41118 ntrclscls00 41143 ntrneicls11 41167 0pwfi 42067 dvnprodlem3 42957 pwsal 43324 salexct 43341 sge0rnn0 43374 sge00 43382 psmeasure 43477 caragen0 43512 0ome 43535 isomenndlem 43536 ovn0 43572 ovnsubadd2lem 43651 smfresal 43787 sprsymrelfvlem 44376 lincval0 45190 lco0 45202 linds0 45240 |
Copyright terms: Public domain | W3C validator |