![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undefne0 | Structured version Visualization version GIF version |
Description: The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.) |
Ref | Expression |
---|---|
undefne0 | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undefval 7745 | . 2 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | |
2 | pwne0 5111 | . . 3 ⊢ 𝒫 ∪ 𝑆 ≠ ∅ | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ≠ ∅) |
4 | 1, 3 | eqnetrd 3034 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ≠ wne 2967 ∅c0 4178 𝒫 cpw 4422 ∪ cuni 4712 ‘cfv 6188 Undefcund 7741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-iota 6152 df-fun 6190 df-fv 6196 df-undef 7742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |