![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undefne0 | Structured version Visualization version GIF version |
Description: The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.) |
Ref | Expression |
---|---|
undefne0 | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undefval 8256 | . 2 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | |
2 | pwne0 5354 | . . 3 ⊢ 𝒫 ∪ 𝑆 ≠ ∅ | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ≠ ∅) |
4 | 1, 3 | eqnetrd 3009 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2941 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 ‘cfv 6540 Undefcund 8252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-undef 8253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |