| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undefne0 | Structured version Visualization version GIF version | ||
| Description: The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.) |
| Ref | Expression |
|---|---|
| undefne0 | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undefval 8216 | . 2 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | |
| 2 | pwne0 5299 | . . 3 ⊢ 𝒫 ∪ 𝑆 ≠ ∅ | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ≠ ∅) |
| 4 | 1, 3 | eqnetrd 2992 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 Undefcund 8212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-undef 8213 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |