Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunin1f | Structured version Visualization version GIF version |
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4984 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.) |
Ref | Expression |
---|---|
iunin1f.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
iunin1f | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin1f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
3 | 2 | r19.41 3274 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
4 | elin 3899 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
5 | 4 | rexbii 3177 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
6 | eliun 4925 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
8 | 3, 5, 7 | 3bitr4i 302 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) |
9 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
10 | elin 3899 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
11 | 8, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶)) |
12 | 11 | eqriv 2735 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∃wrex 3064 ∩ cin 3882 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-iun 4923 |
This theorem is referenced by: esum2dlem 31960 |
Copyright terms: Public domain | W3C validator |