Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunin1f Structured version   Visualization version   GIF version

Theorem iunin1f 32213
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5051 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypothesis
Ref Expression
iunin1f.1 𝑥𝐶
Assertion
Ref Expression
iunin1f 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)

Proof of Theorem iunin1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iunin1f.1 . . . . . 6 𝑥𝐶
21nfcri 2882 . . . . 5 𝑥 𝑦𝐶
32r19.41 3252 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
4 elin 3956 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
54rexbii 3086 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
6 eliun 4991 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
76anbi1i 623 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
83, 5, 73bitr4i 303 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦𝐶))
9 eliun 4991 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
10 elin 3956 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦𝐶))
118, 9, 103bitr4i 303 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶))
1211eqriv 2721 1 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  wnfc 2875  wrex 3062  cin 3939   ciun 4987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-rex 3063  df-v 3468  df-in 3947  df-iun 4989
This theorem is referenced by:  esum2dlem  33545
  Copyright terms: Public domain W3C validator