| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunin1f | Structured version Visualization version GIF version | ||
| Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5058 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.) |
| Ref | Expression |
|---|---|
| iunin1f.1 | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| iunin1f | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin1f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 2 | 1 | nfcri 2897 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 3 | 2 | r19.41 3263 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 4 | elin 3967 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 5 | 4 | rexbii 3094 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 6 | eliun 4995 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 9 | eliun 4995 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
| 10 | elin 3967 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶)) |
| 12 | 11 | eqriv 2734 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 ∃wrex 3070 ∩ cin 3950 ∪ ciun 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rex 3071 df-v 3482 df-in 3958 df-iun 4993 |
| This theorem is referenced by: esum2dlem 34093 |
| Copyright terms: Public domain | W3C validator |