![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunin1f | Structured version Visualization version GIF version |
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5051 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.) |
Ref | Expression |
---|---|
iunin1f.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
iunin1f | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin1f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | nfcri 2882 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
3 | 2 | r19.41 3252 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
4 | elin 3956 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
5 | 4 | rexbii 3086 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
6 | eliun 4991 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
8 | 3, 5, 7 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) |
9 | eliun 4991 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
10 | elin 3956 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶)) |
12 | 11 | eqriv 2721 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ∃wrex 3062 ∩ cin 3939 ∪ ciun 4987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-rex 3063 df-v 3468 df-in 3947 df-iun 4989 |
This theorem is referenced by: esum2dlem 33545 |
Copyright terms: Public domain | W3C validator |