| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralinexa | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| ralinexa | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 399 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) |
| 3 | ralnex 3056 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: soseq 8141 kmlem7 10117 kmlem13 10123 lspsncv0 21063 ntreq0 22971 lhop1lem 25925 nogt01o 27615 ltrnnid 40137 |
| Copyright terms: Public domain | W3C validator |