MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralinexa Structured version   Visualization version   GIF version

Theorem ralinexa 3183
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 403 . . 3 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21ralbii 3088 . 2 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑𝜓))
3 ralnex 3158 . 2 (∀𝑥𝐴 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
42, 3bitri 278 1 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wral 3061  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-ral 3066  df-rex 3067
This theorem is referenced by:  kmlem7  9770  kmlem13  9776  lspsncv0  20183  ntreq0  21974  lhop1lem  24910  soseq  33540  nogt01o  33636  ltrnnid  37887
  Copyright terms: Public domain W3C validator