MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralinexa Structured version   Visualization version   GIF version

Theorem ralinexa 3093
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 399 . . 3 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21ralbii 3085 . 2 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑𝜓))
3 ralnex 3064 . 2 (∀𝑥𝐴 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
42, 3bitri 275 1 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wral 3053  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-ral 3054  df-rex 3063
This theorem is referenced by:  soseq  8139  kmlem7  10146  kmlem13  10152  lspsncv0  20982  ntreq0  22891  lhop1lem  25856  nogt01o  27533  ltrnnid  39463
  Copyright terms: Public domain W3C validator