![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralinexa | Structured version Visualization version GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
ralinexa | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 386 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
2 | 1 | ralbii 3129 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) |
3 | ralnex 3141 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 264 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∀wral 3061 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-ral 3066 df-rex 3067 |
This theorem is referenced by: kmlem7 9181 kmlem13 9187 lspsncv0 19361 lspsncv0OLD 19362 ntreq0 21103 lhop1lem 23997 soseq 32092 ltrnnid 35945 |
Copyright terms: Public domain | W3C validator |