![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralinexa | Structured version Visualization version GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
ralinexa | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 399 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) |
3 | ralnex 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: soseq 8200 kmlem7 10226 kmlem13 10232 lspsncv0 21171 ntreq0 23106 lhop1lem 26072 nogt01o 27759 ltrnnid 40093 |
Copyright terms: Public domain | W3C validator |