Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnid Structured version   Visualization version   GIF version

Theorem ltrnnid 40130
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnnid
StepHypRef Expression
1 ralinexa 3083 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
2 nne 2929 . . . . . . . 8 (¬ (𝐹𝑝) ≠ 𝑝 ↔ (𝐹𝑝) = 𝑝)
32biimpi 216 . . . . . . 7 (¬ (𝐹𝑝) ≠ 𝑝 → (𝐹𝑝) = 𝑝)
43imim2i 16 . . . . . 6 ((¬ 𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝))
54ralimi 3066 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
61, 5sylbir 235 . . . 4 (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
7 ltrneq.b . . . . 5 𝐵 = (Base‘𝐾)
8 ltrneq.l . . . . 5 = (le‘𝐾)
9 ltrneq.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 ltrneq.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 ltrneq.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
127, 8, 9, 10, 11ltrnid 40129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
136, 12imbitrid 244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵)))
1413necon1ad 2942 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝)))
15143impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107   I cid 5532  cres 5640  cfv 6511  Basecbs 17179  lecple 17227  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-laut 39983  df-ldil 40098  df-ltrn 40099
This theorem is referenced by:  trlnidat  40167
  Copyright terms: Public domain W3C validator