![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version |
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
ltrneq.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrneq.l | ⊢ ≤ = (le‘𝐾) |
ltrneq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrneq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrneq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralinexa 3098 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | |
2 | nne 2941 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 ↔ (𝐹‘𝑝) = 𝑝) | |
3 | 2 | biimpi 216 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 → (𝐹‘𝑝) = 𝑝) |
4 | 3 | imim2i 16 | . . . . . 6 ⊢ ((¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
5 | 4 | ralimi 3080 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
6 | 1, 5 | sylbir 235 | . . . 4 ⊢ (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
7 | ltrneq.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | ltrneq.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | ltrneq.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | ltrneq.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | ltrneq.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | 7, 8, 9, 10, 11 | ltrnid 40117 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |
13 | 6, 12 | imbitrid 244 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
14 | 13 | necon1ad 2954 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝))) |
15 | 14 | 3impia 1116 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 class class class wbr 5147 I cid 5581 ↾ cres 5690 ‘cfv 6562 Basecbs 17244 lecple 17304 Atomscatm 39244 HLchlt 39331 LHypclh 39966 LTrncltrn 40083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-lat 18489 df-clat 18556 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-laut 39971 df-ldil 40086 df-ltrn 40087 |
This theorem is referenced by: trlnidat 40155 |
Copyright terms: Public domain | W3C validator |