Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnid Structured version   Visualization version   GIF version

Theorem ltrnnid 40175
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnnid
StepHypRef Expression
1 ralinexa 3085 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
2 nne 2932 . . . . . . . 8 (¬ (𝐹𝑝) ≠ 𝑝 ↔ (𝐹𝑝) = 𝑝)
32biimpi 216 . . . . . . 7 (¬ (𝐹𝑝) ≠ 𝑝 → (𝐹𝑝) = 𝑝)
43imim2i 16 . . . . . 6 ((¬ 𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝))
54ralimi 3069 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
61, 5sylbir 235 . . . 4 (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
7 ltrneq.b . . . . 5 𝐵 = (Base‘𝐾)
8 ltrneq.l . . . . 5 = (le‘𝐾)
9 ltrneq.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 ltrneq.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 ltrneq.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
127, 8, 9, 10, 11ltrnid 40174 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
136, 12imbitrid 244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵)))
1413necon1ad 2945 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝)))
15143impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5086   I cid 5505  cres 5613  cfv 6476  Basecbs 17115  lecple 17163  Atomscatm 39302  HLchlt 39389  LHypclh 40023  LTrncltrn 40140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-laut 40028  df-ldil 40143  df-ltrn 40144
This theorem is referenced by:  trlnidat  40212
  Copyright terms: Public domain W3C validator