| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version | ||
| Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
| Ref | Expression |
|---|---|
| ltrneq.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrneq.l | ⊢ ≤ = (le‘𝐾) |
| ltrneq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrneq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrneq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralinexa 3101 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | |
| 2 | nne 2944 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 ↔ (𝐹‘𝑝) = 𝑝) | |
| 3 | 2 | biimpi 216 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 → (𝐹‘𝑝) = 𝑝) |
| 4 | 3 | imim2i 16 | . . . . . 6 ⊢ ((¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
| 5 | 4 | ralimi 3083 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
| 6 | 1, 5 | sylbir 235 | . . . 4 ⊢ (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
| 7 | ltrneq.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | ltrneq.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 9 | ltrneq.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | ltrneq.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | ltrneq.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 12 | 7, 8, 9, 10, 11 | ltrnid 40137 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |
| 13 | 6, 12 | imbitrid 244 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
| 14 | 13 | necon1ad 2957 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝))) |
| 15 | 14 | 3impia 1118 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 I cid 5577 ↾ cres 5687 ‘cfv 6561 Basecbs 17247 lecple 17304 Atomscatm 39264 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-laut 39991 df-ldil 40106 df-ltrn 40107 |
| This theorem is referenced by: trlnidat 40175 |
| Copyright terms: Public domain | W3C validator |