Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnid Structured version   Visualization version   GIF version

Theorem ltrnnid 36148
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnnid
StepHypRef Expression
1 ralinexa 3175 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
2 nne 2973 . . . . . . . 8 (¬ (𝐹𝑝) ≠ 𝑝 ↔ (𝐹𝑝) = 𝑝)
32biimpi 208 . . . . . . 7 (¬ (𝐹𝑝) ≠ 𝑝 → (𝐹𝑝) = 𝑝)
43imim2i 16 . . . . . 6 ((¬ 𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝))
54ralimi 3131 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
61, 5sylbir 227 . . . 4 (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
7 ltrneq.b . . . . 5 𝐵 = (Base‘𝐾)
8 ltrneq.l . . . . 5 = (le‘𝐾)
9 ltrneq.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 ltrneq.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 ltrneq.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
127, 8, 9, 10, 11ltrnid 36147 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
136, 12syl5ib 236 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵)))
1413necon1ad 2986 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝)))
15143impia 1146 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969  wral 3087  wrex 3088   class class class wbr 4841   I cid 5217  cres 5312  cfv 6099  Basecbs 16180  lecple 16270  Atomscatm 35275  HLchlt 35362  LHypclh 35996  LTrncltrn 36113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-map 8095  df-proset 17239  df-poset 17257  df-plt 17269  df-lub 17285  df-glb 17286  df-join 17287  df-meet 17288  df-p0 17350  df-lat 17357  df-clat 17419  df-oposet 35188  df-ol 35190  df-oml 35191  df-covers 35278  df-ats 35279  df-atl 35310  df-cvlat 35334  df-hlat 35363  df-laut 36001  df-ldil 36116  df-ltrn 36117
This theorem is referenced by:  trlnidat  36185
  Copyright terms: Public domain W3C validator