![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version |
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
ltrneq.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrneq.l | ⊢ ≤ = (le‘𝐾) |
ltrneq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrneq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrneq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralinexa 3107 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | |
2 | nne 2950 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 ↔ (𝐹‘𝑝) = 𝑝) | |
3 | 2 | biimpi 216 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 → (𝐹‘𝑝) = 𝑝) |
4 | 3 | imim2i 16 | . . . . . 6 ⊢ ((¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
5 | 4 | ralimi 3089 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
6 | 1, 5 | sylbir 235 | . . . 4 ⊢ (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
7 | ltrneq.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | ltrneq.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | ltrneq.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | ltrneq.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | ltrneq.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | 7, 8, 9, 10, 11 | ltrnid 40092 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |
13 | 6, 12 | imbitrid 244 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
14 | 13 | necon1ad 2963 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝))) |
15 | 14 | 3impia 1117 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 I cid 5592 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 lecple 17318 Atomscatm 39219 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-laut 39946 df-ldil 40061 df-ltrn 40062 |
This theorem is referenced by: trlnidat 40130 |
Copyright terms: Public domain | W3C validator |