Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version |
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
ltrneq.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrneq.l | ⊢ ≤ = (le‘𝐾) |
ltrneq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrneq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrneq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralinexa 3191 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | |
2 | nne 2947 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 ↔ (𝐹‘𝑝) = 𝑝) | |
3 | 2 | biimpi 215 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 → (𝐹‘𝑝) = 𝑝) |
4 | 3 | imim2i 16 | . . . . . 6 ⊢ ((¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
5 | 4 | ralimi 3087 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
6 | 1, 5 | sylbir 234 | . . . 4 ⊢ (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
7 | ltrneq.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | ltrneq.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | ltrneq.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | ltrneq.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | ltrneq.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | 7, 8, 9, 10, 11 | ltrnid 38149 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |
13 | 6, 12 | syl5ib 243 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
14 | 13 | necon1ad 2960 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝))) |
15 | 14 | 3impia 1116 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-laut 38003 df-ldil 38118 df-ltrn 38119 |
This theorem is referenced by: trlnidat 38187 |
Copyright terms: Public domain | W3C validator |