![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version |
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom π and not equal to its translation. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
ltrneq.b | β’ π΅ = (BaseβπΎ) |
ltrneq.l | β’ β€ = (leβπΎ) |
ltrneq.a | β’ π΄ = (AtomsβπΎ) |
ltrneq.h | β’ π» = (LHypβπΎ) |
ltrneq.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnnid | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralinexa 3100 | . . . . 5 β’ (βπ β π΄ (Β¬ π β€ π β Β¬ (πΉβπ) β π) β Β¬ βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π)) | |
2 | nne 2943 | . . . . . . . 8 β’ (Β¬ (πΉβπ) β π β (πΉβπ) = π) | |
3 | 2 | biimpi 215 | . . . . . . 7 β’ (Β¬ (πΉβπ) β π β (πΉβπ) = π) |
4 | 3 | imim2i 16 | . . . . . 6 β’ ((Β¬ π β€ π β Β¬ (πΉβπ) β π) β (Β¬ π β€ π β (πΉβπ) = π)) |
5 | 4 | ralimi 3082 | . . . . 5 β’ (βπ β π΄ (Β¬ π β€ π β Β¬ (πΉβπ) β π) β βπ β π΄ (Β¬ π β€ π β (πΉβπ) = π)) |
6 | 1, 5 | sylbir 234 | . . . 4 β’ (Β¬ βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π) β βπ β π΄ (Β¬ π β€ π β (πΉβπ) = π)) |
7 | ltrneq.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
8 | ltrneq.l | . . . . 5 β’ β€ = (leβπΎ) | |
9 | ltrneq.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
10 | ltrneq.h | . . . . 5 β’ π» = (LHypβπΎ) | |
11 | ltrneq.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
12 | 7, 8, 9, 10, 11 | ltrnid 39472 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ β π΄ (Β¬ π β€ π β (πΉβπ) = π) β πΉ = ( I βΎ π΅))) |
13 | 6, 12 | imbitrid 243 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (Β¬ βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π) β πΉ = ( I βΎ π΅))) |
14 | 13 | necon1ad 2956 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΉ β ( I βΎ π΅) β βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π))) |
15 | 14 | 3impia 1116 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 βwrex 3069 class class class wbr 5148 I cid 5573 βΎ cres 5678 βcfv 6543 Basecbs 17151 lecple 17211 Atomscatm 38599 HLchlt 38686 LHypclh 39321 LTrncltrn 39438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38512 df-ol 38514 df-oml 38515 df-covers 38602 df-ats 38603 df-atl 38634 df-cvlat 38658 df-hlat 38687 df-laut 39326 df-ldil 39441 df-ltrn 39442 |
This theorem is referenced by: trlnidat 39510 |
Copyright terms: Public domain | W3C validator |