Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnid Structured version   Visualization version   GIF version

Theorem ltrnnid 40137
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnnid
StepHypRef Expression
1 ralinexa 3084 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
2 nne 2930 . . . . . . . 8 (¬ (𝐹𝑝) ≠ 𝑝 ↔ (𝐹𝑝) = 𝑝)
32biimpi 216 . . . . . . 7 (¬ (𝐹𝑝) ≠ 𝑝 → (𝐹𝑝) = 𝑝)
43imim2i 16 . . . . . 6 ((¬ 𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝))
54ralimi 3067 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
61, 5sylbir 235 . . . 4 (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
7 ltrneq.b . . . . 5 𝐵 = (Base‘𝐾)
8 ltrneq.l . . . . 5 = (le‘𝐾)
9 ltrneq.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 ltrneq.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 ltrneq.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
127, 8, 9, 10, 11ltrnid 40136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
136, 12imbitrid 244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵)))
1413necon1ad 2943 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝)))
15143impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110   I cid 5535  cres 5643  cfv 6514  Basecbs 17186  lecple 17234  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-laut 39990  df-ldil 40105  df-ltrn 40106
This theorem is referenced by:  trlnidat  40174
  Copyright terms: Public domain W3C validator